결함 제어를 통한 금속산화물 소재의 전기화학 특성 제어

  • 정형모 (강원대학교 공과대학 재료공학전공) ;
  • 신원호 (한국세라믹기술원 에너지환경소재본부)
  • Published : 2018.06.30

Abstract

Metal oxide based materials have been widely used to fields of electrochemical applications. Recently, various type of defects from microstructures of metal oxides and their nanocomposites have been raised as the important material design factors for realizing highly improved electrochemical properties. Previous experimental and theoretical works have suggested that controlling the reaction activity and kinetics of the key electrochemical reactions by activated interfaces originating from the defect sites can play an important role in achieving the robust energy storage and conversion. Therefore, this paper focuses on the role of defect-controlled metal oxide materials such as doping, edge-sites, grain boundaries and nano-sized pores for the high performances in energy storage devices and electrocatalysts. The research approaches demonstrated here could offer a possible route to obtain noble ideas for designing the metal oxide materials for the energy storage and conversion applications.

Keywords

References

  1. A. J Bard, L. R. Faulkner, Electrochemical methods : fundamentals and applications; Wiley, New York, 2001.
  2. D. A Jones, Principles and prevention of corrosion; Macmillan, New York, 1992.
  3. D. D. Andrew, J. H. Montoya, V. Aleksandra, "Improving Oxygen Electrochemistry through Nanoscopic Confinement," ChemCatChem, 7 [5] 738-42 (2015). https://doi.org/10.1002/cctc.201402864
  4. V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Norskov, "Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure," Angew. Chem. Int. Ed., 45 [18] 2897-901 (2006). https://doi.org/10.1002/anie.200504386
  5. A. Vojvodic, J. K. Norskov, "New design paradigm for heterogeneous catalysts," Natl. Sci. Rev., 2 [2] 140-43 (2015). https://doi.org/10.1093/nsr/nwv023
  6. P. Gao, P. Metz, T. Hey, Y. Gong, D. Liu, D. D. Edwards, J. Y. Howe, R. Huang, S. T. Misture, "The critical role of point defects in improving the specific capacitance of ${\delta}$-Mn$O_2$ nanosheets," Nat. Commun., 8 14559 (2017). https://doi.org/10.1038/ncomms14559
  7. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, "Combining theory and experiment in electrocatalysis: Insights into materials design," Science, 355 [6321] (2017).
  8. D. Pech, M. Brunet, H. Durou, P. H. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna, P. Simon, "Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon," Nat. Nanotechnol., 5 [9] 651-54 (2010). https://doi.org/10.1038/nnano.2010.162
  9. P. Simon, Y. Gogotsi, "Materials for electrochemical capacitors," Nat. Mater., 7 [11] 845-54 (2008). https://doi.org/10.1038/nmat2297
  10. C. W. Li, J. Ciston, M. W. Kanan, "Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper," Nature, 508 [7497] 504-07 (2014). https://doi.org/10.1038/nature13249
  11. X. Hong, K. Chan, C. Tsai, J. K. Norskov, "How Doped $MoS_2$ Breaks Transition-Metal Scaling Relations for $CO_2$ Electrochemical Reduction," ACS Catal., 6 [7] 4428-37 (2016). https://doi.org/10.1021/acscatal.6b00619
  12. Y. Chen, C. W. Li, M. W. Kanan, "Aqueous $CO_2$ Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles," J. Am. Chem. Soc., 134 [49] 19969-72 (2012).
  13. C. W. Li, M. W. Kanan, "$CO_2$ Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick $Cu_2O$ Films," J. Am. Chem. Soc., 134 [17] 7231-34 (2012). https://doi.org/10.1021/ja3010978
  14. A. Verdaguer-Casadevall, C. W. Li, T. P. Johansson, S. B. Scott, J. T. McKeown, M. Kumar, I. E. L. Stephens, M. W. Kanan, I. Chorkendorff, "Probing the Active Surface Sites for CO Reduction on Oxide-Derived Copper Electrocatalysts," J. Am. Chem. Soc., 137 [31] 9808-11 (2015). https://doi.org/10.1021/jacs.5b06227
  15. H. Mistry, A. S. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser, B. R. Cuenya, "Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene," Nat. Commun., 7 12123 (2016). https://doi.org/10.1038/ncomms12123
  16. Z. Yufei, C. Guangbo, B. Tong, Z. Chao, W. G. I. N., W. Li Zhu, T. Chen Ho, S. L. J., O. H. Dermot, Z. Tierui, "Defect Rich Ultrathin ZnAl Layered Double Hydroxide Nanosheets for Efficient Photoreduction of $CO_2$ to CO with Water," Adv. Mater., 27 [47] 7824-31 (2015). https://doi.org/10.1002/adma.201503730
  17. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, "Carbon-Based Supercapacitors Produced by Activation of Graphene," Science, 332 [6037] 1537-41 (2011). https://doi.org/10.1126/science.1200770
  18. Y. Ren, Z. Ma, R. E. Morris, Z. Liu, F. Jiao, S. Dai, P. G. Bruce, "A solid with a hierarchical tetramodal micro-meso-macro pore size distribution," Nat. Commun., 4 2015 (2013). https://doi.org/10.1038/ncomms3015
  19. Y.-S. Hu, Y.-G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, "Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity," Nat. Mater., 5 [9] 713-17 (2006). https://doi.org/10.1038/nmat1709
  20. H. M. Jeong, K. M. Choi, T. Cheng, D. K. Lee, R. Zhou, I. W. Ock, D. J. Milliron, W. A. Goddard, J. K. Kang, "Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life," Proc. Natl. Acad. Sci. USA., 112 [26] 7914-19 (2015). https://doi.org/10.1073/pnas.1503546112
  21. Z. Zhiyuan, S. Ting, Z. Jixin, H. Xiao, Y. Zongyou, L. Gang, F. Zhanxi, Y. Qingyu, H. H. Hoon, Z. Hua, "An Effective Method for the Fabrication of Few Layer Thick Inorganic Nanosheets," Angew. Chem. Int. Ed., 51 [36] 9052-56 (2012). https://doi.org/10.1002/anie.201204208
  22. K. Youngmin, D. H. K. Jackson, L. Daewon, M. Choi, T.-W. Kim, S. Y. Jeong, H. J. Chae, H. W. Kim, N. Park, H. Chang, T. F. Kuech, H. J. Kim, "In Situ Electrochemical Activation of Atomic Layer Deposition Coated $MoS_2$ Basal Planes for Efficient Hydrogen Evolution Reaction," Adv. Funct. Mater., 27 [34] 1701825 (2017). https://doi.org/10.1002/adfm.201701825
  23. B. E. Conway, Electrochemical Supercapacitors Electrochemical Supercapacitors; Springer, New York, 1999.
  24. M. Winter, R. J. Brodd, "What are batteries, fuel cells, and supercapacitors? (vol 104, pg 4245, 2003)," Chem. Rev., 105 [3] 1021-21 (2005). https://doi.org/10.1021/cr040110e
  25. L. L. Zhang, X. Zhao, H. Ji, M. D. Stoller, L. Lai, S. Murali, S. McDonnell, B. Cleveger, R. M. Wallace, R. S. Ruoff, "Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon," Energy Environ. Sci., 5 [11] 9618-25 (2012). https://doi.org/10.1039/c2ee23442d
  26. H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, "Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes," Nano Lett., 11 [6] 2472-77 (2011). https://doi.org/10.1021/nl2009058
  27. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, "Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications," Chem. Rev., 110 [1] 389-458 (2010). https://doi.org/10.1021/cr900137k
  28. J. P. Randin, E. Yeager, "Differential Capacitance Study of Stress/Annealed Pyrolytic Graphite Electrodes," J. Electrochem. Soc., 118 [5] 711-& (1971). https://doi.org/10.1149/1.2408151
  29. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna, "Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer," Science, 313 [5794] 1760-63 (2006). https://doi.org/10.1126/science.1132195
  30. Y. Hori, Modern Aspects of Electrochemistry. pp. 89-189, Ed. by C. G. Vayenas, R. E. White, M. E. Gamboa-Aldeco, Springer, New York, 2008.
  31. A. A. Peterson, J. K. Norskov, "Activity Descriptors for $CO_2$ Electroreduction to Methane on Transition-Metal Catalysts," J. Phys. Chem. Lett., 3 [2] 251-58 (2012). https://doi.org/10.1021/jz201461p
  32. J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff , J. K. Norskov, "Computational high-throughput screening of electrocatalytic materials for hydrogen evolution," Nat. Mater., 5 [11] 909-13 (2006). https://doi.org/10.1038/nmat1752
  33. H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, "Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithiuminduced conversion for overall water splitting," Nat. Commun., 6 7261 (2015). https://doi.org/10.1038/ncomms8261
  34. K. P. Kuhl, E. R. Cave, D. N. Abram, T. F. Jaramillo, "New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces," Energy Environ. Sci., 5 [5] 7050-59 (2012). https://doi.org/10.1039/c2ee21234j
  35. M. Ma, K. Djanashvili, W. A. Smith, "Controllable Hydrocarbon Formation from the Electrochemical Reduction of $CO_2$ over Cu Nanowire Arrays," Angew. Chem. Int. Ed., 55 [23] 6680-84 (2016). https://doi.org/10.1002/anie.201601282
  36. R. Kas, K. K. Hummadi, R. Kortlever, P. de Wit, A. Milbrat, M. W. J. Luiten-Olieman, N. E. Benes, M. T. M. Koper, G. Mul, "Three-dimensional porous hollow fibre copper electrodes for efficient and highrate electrochemical carbon dioxide reduction," Nat. Commun., 7 10748 (2016). https://doi.org/10.1038/ncomms10748
  37. M. R. Singh, E. L. Clark, A. T. Bell, "Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solardriven electrochemical reduction of carbon dioxide," Phys. Chem. Chem. Phys., 17 [29] 18924-36 (2015). https://doi.org/10.1039/C5CP03283K