Efficiency Improvement Using Two Balanced Subsets

HongTae Kim™

L.

Efficiency is one of the most important factors in cryptographic systems. Cheon et al. proposed a new exponent form
for speeding up the exponentiation operation in discrete logarithm based cryptosystems. It is called split exponent with the
form e, + e, for a fixed element a and two elements e,, e, with low Hamming weight representations. They chose e,
e, in two unbalanced subsets S, S, of Z,, respectively. We achieve efficiency improvement making .5, S, balanced
subsets of Z,. As a result, speedup for exponentiations on binary fields is 9.1% and speedup for scalar multiplications on
Koblitz Curves is 12.1%.
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1. Introduction

Discrete logarithm(DL) is a very important
concept in cryptography. Many cryptographic
systems are based on this. In one direction,
studies on these are related to protocols or
attacks. In other direction, there is about the
efficiency of DL-based cryptosystems. To make
these systems efficient, there have been many
trials to reduce the complexity. The complexity
is related to exponentiation operation in these
systems. Exponentiation consists of two parts,
squarings and multiplications. The number of
squarings is fixed and squarings can be reduced
by precomputations or usage of special structure
likewise normal basis. Meanwhile, the number of
multiplications in standard exponent has been
the focus of many studies [1, 4, 6, 7]. In addition
to these trials, variants of standard exponent
have been presented [5, 2]. Hoffstein and
Silvermann proposed a system with special
exponent of products of random small Hamming
weights [5]. Cheon et al. introduced an exponent
with special type e; +ae, for a fixed element
a where e, e, have low Hamming weights [2].
The exponentiation operation using exponent of
theirs is faster than exponentiation algorithms
for standard exponents. We improve the
efficiency of Cheon et al.’s system using two

balanced subsets of Z,.

Result We can get efficient result using two
balanced subsets. The number of multiplications
for binary fields is reduced to 30 from 33 by
9.19%6 compared to Cheon et al.’s method. A
scalar multiplication on Koblitz curves requires
29 point additions, which is a speedup by 12.1%

compared to Cheon et al.’s method.

Organization The remainder of this paper is

organized as follows. In Section 2, we introduce
Cheon et al.’s split exponent DL problem and
mention relevant properties. Also, we give two
algorithms for two balanced subsets. In Section
3, we analyze the performance of
exponentiations on binary fields and
multiplications on Koblitz curves. We conclude

in Section 4.

2. Split Exponent DL Problem for

good a’s

Split exponent is an element of S;+a«S, of

Definition 2.1. The definition of split exponent
discrete logarithm(SEDL) problem is given in
[21.

Definition 2.1 ([2]) Let S,, S, < Z. Let P

be a generator of an additive abelian group G
with prime order p. Let a be an element in

Z,. Let A be any probabilistic algorithm. A's

success probability in solving the SEDL
problem on (9,,8,,a, G) is defined by

AdvA:%a‘G =Pr[A(PzP) =zlz<"S5 +as,].

oy

Definition 2.2 Let S, S, & Z. We call

P

a&Z, "c-good” for &, S if S +al, =cp.

Theorem 2.1 Let 5, 5, & Z. If a is c-good
for S, S, then the SEDL problem on

(8,8, @, G) is at least (t,%)—hard if the DL

problem on G is (t,e)-hard.

Proof. If [S,+aS>cp then a random



rE€Z is in Y +ab with probability ec.
Therefore if algorithm A breaks SEDL on

(8,8,,a,G) in time t with probability

Qlm

then A breaks DL with probability e. ]

We revise Cheon et al.’s algorithms to pick
c—good «'s for a good enough constant c¢. We
can reduce the complexity using balanced

subsets 5|, S, for randomized algorithm.

Algorithm 1 Choosing a Random Split

Exponent

On input 5;, 5, a :

1. Randomly select z<"Z,

2. For i=1,2, 3, -
2.1 Randomly select y<'"S,

2.2 Check if z=2z—ya<S,. Output (z,y)
and stop if it is.

3. If no (2,y) €8, < 8, is found, go to State 1.

Algorithm 2 Finding a c¢-good Element «

Let c¢=2c.

On input $), 8, & Z, and 7€ Z:
1. Randomly select a<"Z,

2. Randomly select Ty, X9, E 7, and test
if each of them belongs to 5, +al, by
Step 2 of Algorithm 1.

3. If the number of z;,’s in S, +als, is at

least c¢7, output «. Otherwise go to
State 1.
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Algorithm 1 outputs a uniformly distributed

element of S, +a.5, with the expected number

1 . . . .
of - iterations provided that « is c-good.

Hence the expected running time of this

algorithm is at most O(%) modular

multiplications where |S|=max{IS,,[S,/}.

Let X,X,,...X, be random variables such
that X;=1 if 2,€5 +as, and 0 otherwise.
Let X=X +..+X. Using this notation,
Py =PrlX> cr] for ¢=2c. By a Chernoff
bound, Cheon et al. get the bound as follows:

—0.557¢t
Py <2707, 2)

We can estimate the expected running time

15,1155

of Algorithm 2. Let 0= >1. A random

element a€Z, is ¢-good with probability

- 9/(9+1)—E'

1—¢

P, 3)

If a is c¢-good, the probability that at least

ct elements from randomly selected T

elements from Z, belong to S +a5, is given
by

— T\ O ONTE l
P= ~T(Z.)c (1—¢)" = 5 (4)
If S)]1S) >=p and we use Algorithm 1 to

test if z;’s belongs to §;+aS,, the expected

running time of Algorithm 2 is at most
T:(P1P2)*1x2—76x|5\. (5)

The following example gives the bound for
specific parameters. This bound is more than
that of Cheon et al.’s.
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Example If # > 1, we may take c=7 and

7=576 as Cheon et al’s example. Then

Py<2% P = % and P, =~ é Thus,
the running time of Algorithm 2 is
T= 2304%|5|, which is less than 2"|S| for
0=2.

3. Application of Split Exponents

In this section, we improve the efficiency of
Cheon et al.s method using two balanced

subsets.

3.1 w-NAF Representation
The definition of w-NAF is given in [9, 3, 8]

Definition 3.1 Let w be an integer =2 and D
a subset of Z with 0 D. A w-NAF with the
digit set D is a sequence of digits satisfying the
following two conditions:

1. Each non-zero digit belongs to D.

2. Among any w consecutive digits, at most

one 1S non-zero.

The number of w-NAFs of length < m and
weight ¢t with a coefficient set D is given as
follows [3]:

m’(“”tl)(t’l) DI ®)

3.2 Split Exponent for Binary Fields

Let « be a split exponent =z, +az, for
unsigned w-NAFs z, and z, with length m
where ¢, and ¢, are weights of z; and x,,

respectively. We can compute ¢ in two ways

where ¢ is a finite field element. The first

method is to individually compute ¢ and (¢*)"
and multiply them. The number of multiplications
is ¢, +t,+2"—3. Cheon et al. [2] reduced the
number of multiplications in the Algorithm 3
using the BGMW technique [1]. Its complexity
is given by ¢t +t,+2""'—2. We denote

m—1
w;= Y ;2" where z,€D={1,35,.,2"-1}
247; :

for j=1,2. If two sets S, & of 8 +al, C Z
are chosen with balanced size, we can get the

merit in efficiency.

Algorithm 3 Exponentiation by a split exponent

1. Input g,h,z; and z,.

2. Set s<1, t<1.

3. For i=2"-1,2"-3,..,3,1:

3.1 For each j such that T, ; =1, set
s—sX 2.

32 For each j such that z,;=i, set
se—sx h?.

33 If i=1 then set t=tXs; else set
t=txs

4. Output t.

Table 1 compares Cheon et al.’s performance
with that of ours when m is the largest integer
less than or equal to llogpl—w+1. To

280 security, Cheon et al. assumed

guarantee the
that the exponentiation algorithms use 160-bit
exponents and  [S/IS,) = 2",  They used
different
According to Table 1, the expected speedup is

9.1% for |5, =18, = 28! where w=2, m =159.

unbalanced  sets and weights.

Cheon et al. used 15| =1.2x2"% || =1.0x2%
and different weights ¢, =27, t, =6.
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<Table 1> Performance of exponentiations for

160-bit exponent (3: the number of multiplications)

4 iy S| | 18, 8

w=2 Ours 15 15 o814 | o814 30
m=159 | Cheon 27 6 91202 [ 9100 | 33
w=3 Ours 13 12 | 9515 | 9195 | 27
m =158 | Cheon 22 5 1217 | 9391 29
w=4 Ours 11 10 9840 | 9779 27
m =157 | Cheon 19 4 | 91246 | 936.1 29
w=95 Ours 10 9 | 9867 [ 9797 | 33
m=156 | Cheon 16 4 | 91231 | 9100 | 34
w=6 Ours 9 8 | 2577 | 9196 | 47
m =155 | Cheon 13 4 9L16.6 | o43.7 47

3.3 Split Exponent for Scalar

Multiplications on Koblitz Curves

A 7-adic w-NAF is a w-NAF as a r-adic
representation of an integer with the nonzero

digit set D={£1,£3,..,2(2V—1)}. It is

m—1
denoted by a= Y a7. Let F be an ordinary
=0

=

elliptic curve. Given a 7-adic w-NAF

m—1

a=Y,a7 and a point QEE, aQ is defined
i=0

m—1

as aQ=Y,a4,7(Q).
i=0

Let k& be the form k=k, +ak, and Q=aP

for P, €FE. Cheon et al. reduced the number

of point additions by sharing the point

additions in the precomputation stage. They

compute

kP=kP+kQ=R +3R,+..+(2" '—1)R

PR
using the BGMW technique [1] where
’o=k isign(kl‘j)Tj(P) +k2_’j:iisign(k2rj)7j(Q)

i
m—1

m—1
for Kk =Yk o and k=Y k. The
j=0 j=0

detailed procedure is given in Algorithm 4. It

requires wt(k;) +wt(ky) +2° 72 —2 point

additions, one point doubling, and 2(m—1)r

operations as Cheon et al.’s results.

Algorithm 4 Scalar multiplication by a split

scalar

1. Input P, @k, and k,.
2. Precomputation stage:
2.1 Set RO for i=1,3,5,...,.2" ' —1.
2.2 For j=0 upto m—1:

2.2.1 Set le,_/l(_R\k, j‘-i-sign(kl_’j)Ti(P)‘

2.2.2 Set R|k2_]|HH‘k2b/‘+sign(k2‘j)7‘7‘(Q),
2.3 For j=0 upto m—1:

2.3.1 For i=1,3,5,...,.2" ' —1:

2311 If [k =1 or lky|=1,
Ri(_R\kL,\ + 1y, IR

3. Computation of k,P+k,Q

=R +3R,+..+(2" '—1)R

2" ‘—1:
3.1 Set SR, _; Set T—R,._,.
3.2 For i=2""1—3,2¢"1—5,..5,3:
3.2.1 Set SS+R,.

3.22 Set T<-T+5.

3.3 Set 7<—=2T.
34 Set T~ T+S+R,.
4. Output 7.
Table 2 shows results for specific

parameters. Cheon et al. used different
1S,,19,),¢, and ¢, from ours for same w and m.
If we use a normal basis, we can ignore the
computation of 7 map. In this case, our method
is faster than Cheon et al.’s method by 12.1%
for w=2,m=157. Cheon et al
1S =1.1x2" |8/ =1.8%x2% and different

weights t, =28, ¢, =6.

used

<Table 2> Performance of scalar multiplications on
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K163 (A: Addition, D: Doubling, 7:Computation of

the 7 map, - the number of scalar multiplications)

ty |ty | 1S ] 15| i
w=2 | Ours |15 15|2811 | 9811 29A4+312T
m =159 |Cheon| 27 | 6 [2120:2| 210:0 334+3127T

w=3 | Ours | 13|12 |2%5| 27| 254+1D+310T
m =158 |Cheon | 22 | 5 |2!21:7| 2391 | 284+1D+3107

w=4 | Ours | 1110|280 (279 | 234+ 1D+3067
m =157 | Cheon | 19 1246|9361 | 95 4 +1D+ 3067

w=5 | Ours | 10 98671 9797 | 95 4+ 1D+ 3027
m =156 | Cheon | 16 2123:1) 9400 | 97 4+ 1D+ 3027

w=6 | Ours | 9 9877|9796 | 314+ 1D+ 2087
m = 155 | Cheon| 13 Q1166|9137 | 39 4+ 1D+ 298 T

00| O

4. Conclusion

Studies on efficiency of cryptographic
systems have been proposed sustainedly.
Recently, variants of original exponent have
been come into the spotlight. Though strict
security proof is not perfect, many trials have
been suggested. We only have focused on the
efficiency of split exponents. It would be
interesting to apply the previous security proof
techniques to schemes or protocols using split

exponents.
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