
Efficiency Improvement Using Two Balanced Subsets

HongTae Kim*

요 약

Efficiency is one of the most important factors in cryptographic systems. Cheon et al. proposed a new exponent form

for speeding up the exponentiation operation in discrete logarithm based cryptosystems. It is called split exponent with the

form 
 for a fixed element  and two elements  ,  with low Hamming weight representations. They chose  ,

 in two unbalanced subsets  ,  of  , respectively. We achieve efficiency improvement making  ,  balanced

subsets of  . As a result, speedup for exponentiations on binary fields is 9.1% and speedup for scalar multiplications on

Koblitz Curves is 12.1%.

두 개의 balanced subset을 이용한 효율성 개선

김 홍 태*

ABSTRACT

암호시스템에서 효율성은 매우 중요한 요소 중의 하나이다. 천정희 외 3인은 이산대수 문제에 기반하는 암호 시스템에서

지수승 연산 속도를 높이기 위해 새로운 지수 형태를 제안하였다. 제안된 변형은 고정된 원소 와 작은 해밍 웨이트를 가지

는 두 원소  , 에 대해  로 표현되며 스플릿 지수라 불린다. 그들은  , 를 각각 의 부분집합이면서 언밸런스

드 부분집합인  , 에서 선택하였다. 본 논문에서는  , 를 의 부분집합이면서 밸런스드 부분집합이 되도록 하여 효율

성을 개선한다. 결과적으로, 이진 유한체에서의 지수승 연산 속도는 9.1%, 코블리츠 곡선에서의 스칼라 곱셈 연산 속도는

12.1% 빨라진다.

Key words : Exponentiation, Split exponent, Low Hamming weight, Discrete logarithm
접수일(2018년 2월 18일), 게재확정일(2018년 3월 23일) * 공군사관학교/기초과학과



14 융합보안논문지 제18권 제1호 (2018. 3)

1. Introduction

Discrete logarithm(DL) is a very important

concept in cryptography. Many cryptographic

systems are based on this. In one direction,

studies on these are related to protocols or

attacks. In other direction, there is about the

efficiency of DL-based cryptosystems. To make

these systems efficient, there have been many

trials to reduce the complexity. The complexity

is related to exponentiation operation in these

systems. Exponentiation consists of two parts,

squarings and multiplications. The number of

squarings is fixed and squarings can be reduced

by precomputations or usage of special structure

likewise normal basis. Meanwhile, the number of

multiplications in standard exponent has been

the focus of many studies [1, 4, 6, 7]. In addition

to these trials, variants of standard exponent

have been presented [5, 2]. Hoffstein and

Silvermann proposed a system with special

exponent of products of random small Hamming

weights [5]. Cheon et al. introduced an exponent

with special type    for a fixed element

 where ,  have low Hamming weights [2].

The exponentiation operation using exponent of

theirs is faster than exponentiation algorithms

for standard exponents. We improve the

efficiency of Cheon et al.'s system using two

balanced subsets of .

Result We can get efficient result using two

balanced subsets. The number of multiplications

for binary fields is reduced to 30 from 33 by

9.1% compared to Cheon et al.'s method. A

scalar multiplication on Koblitz curves requires

29 point additions, which is a speedup by 12.1%

compared to Cheon et al.'s method.

Organization The remainder of this paper is

organized as follows. In Section 2, we introduce

Cheon et al.'s split exponent DL problem and

mention relevant properties. Also, we give two

algorithms for two balanced subsets. In Section

3, we analyze the performance of

exponentiations on binary fields and

multiplications on Koblitz curves. We conclude

in Section 4.

2. Split Exponent DL Problem for

good 's

Split exponent is an element of    of

Definition 2.1. The definition of split exponent

discrete logarithm(SEDL) problem is given in

[2].

Definition 2.1 ([2]) Let ,  ⊆ . Let 

be a generator of an additive abelian group 

with prime order . Let  be an element in

. Let  be any probabilistic algorithm. 's

success probability in solving the SEDL

problem on      is defined by


  Pr   ←    .

(1)

Definition 2.2 Let ,  ⊆ . We call

∈ "-good" for ,  if    ≥ .

Theorem 2.1 Let ,  ⊆ . If  is -good

for ,  then the SEDL problem on

     is at least  


-hard if the DL

problem on  is  -hard.

Proof. If    ≥  then a random



Efficiency Improvement Using Two Balanced Subsets 15

∈ is in    with probability .

Therefore if algorithm  breaks SEDL on

     in time  with probability 



then  breaks DL with probability  . □

We revise Cheon et al.'s algorithms to pick

-good 's for a good enough constant . We

can reduce the complexity using balanced

subsets ,  for randomized algorithm.

Algorithm 1 Choosing a Random Split

Exponent

On input    :

1. Randomly select ←.

2. For i=1,2, 3, …:

2.1 Randomly select ←

2.2 Check if     ∈. Output 

and stop if it is.

3. If no ∈ ×  is found, go to State 1.

Algorithm 2 Finding a -good Element 

Let  .

On input ,  ⊆  and ∈ :

1. Randomly select ←.

2. Randomly select ∈ and test

if each of them belongs to    by

Step 2 of Algorithm 1.

3. If the number of 's in    is at

least , output  . Otherwise go to

State 1.

Algorithm 1 outputs a uniformly distributed

element of    with the expected number

of 


iterations provided that  is -good.

Hence the expected running time of this

algorithm is at most 

 
 modular

multiplications where    maxS S .

Let  be random variables such

that    if ∈   and 0 otherwise.

Let     . Using this notation,

  Pr  for  . By a Chernoff

bound, Cheon et al. get the bound as follows:

   . (2)

We can estimate the expected running time

of Algorithm 2. Let  

 
 . A random

element ∈ is -good with probability

 ≥
 

  
. (3)

If  is -good, the probability that at least

 elements from randomly selected 

elements from  belong to    is given

by

  
 ≥



   ≈ 


. (4)

If   ≥  and we use Algorithm 1 to

test if 's belongs to   , the expected

running time of Algorithm 2 is at most

   × 


×  . (5)

The following example gives the bound for

specific parameters. This bound is more than

that of Cheon et al.'s.



16 융합보안논문지 제18권 제1호 (2018. 3)

Example If  ≥ , we may take   


and

 576 as Cheon et al.'s example. Then

 ≤ ,  ≥ 

  
and  ≈ 


. Thus,

the running time of Algorithm 2 is

    

 
 , which is less than    for

 ≥ .

3. Application of Split Exponents

In this section, we improve the efficiency of

Cheon et al.'s method using two balanced

subsets.

3.1 -NAF Representation

The definition of -NAF is given in [9, 3, 8]:

Definition 3.1 Let  be an integer ≥  and 

a subset of  with  ∉ . A -NAF with the

digit set  is a sequence of digits satisfying the

following two conditions:

1. Each non-zero digit belongs to .

2. Among any  consecutive digits, at most

one is non-zero.

The number of -NAFs of length ≤  and

weight  with a coefficient set  is given as

follows [3]:

    
   . (6)

3.2 Split Exponent for Binary Fields

Let  be a split exponent      for

unsigned -NAFs  and  with length 

where  and  are weights of  and ,

respectively. We can compute  in two ways

where  is a finite field element. The first

method is to individually compute 
 and 



and multiply them. The number of multiplications

is     . Cheon et al. [2] reduced the

number of multiplications in the Algorithm 3

using the BGMW technique [1]. Its complexity

is given by      . We denote

  
  




 , where ∈  w 

for   . If two sets ,  of    ⊂ 

are chosen with balanced size, we can get the

merit in efficiency.

Algorithm 3 Exponentiation by a split exponent

1. Input  and .

2. Set ←, ←.

3. For       :

3.1 For each  such that   , set

← × 


.

3.2 For each  such that   , set

← × 


.

3.3 If    then set   ×  ; else set

  × .

4. Output .

Table 1 compares Cheon et al.'s performance

with that of ours when  is the largest integer

less than or equal to ⌊log⌋  . To

guarantee the  security, Cheon et al. assumed

that the exponentiation algorithms use 160-bit

exponents and  ≈ . They used

unbalanced sets and different weights.

According to Table 1, the expected speedup is

9.1% for   ≈  where   ,   .

Cheon et al. used    × ,    × 

and different weights   ,   .



Efficiency Improvement Using Two Balanced Subsets 17

<Table 1> Performance of exponentiations for

160-bit exponent (: the number of multiplications)

    

  

  

Ours 15 15   30

Cheon 27 6   33

  

  

Ours 13 12   27

Cheon 22 5   29

  

  

Ours 11 10   27

Cheon 19 4   29

  

  

Ours 10 9   33

Cheon 16 4   34

  

  

Ours 9 8   47

Cheon 13 4   47

3.3 Split Exponent for Scalar

Multiplications on Koblitz Curves

A -adic -NAF is a -NAF as a -adic

representation of an integer with the nonzero

digit set   ± ± ± w  . It is

denoted by   
  




 . Let  be an ordinary

elliptic curve. Given a -adic -NAF

  
  




 and a point ∈,  is defined

as   
  




 .

Let  be the form      and   

for  ∈. Cheon et al. reduced the number

of point additions by sharing the point

additions in the precomputation stage. They

compute

         


   

using the BGMW technique [1] where

   ±   ± 


for   
  




 and   

  




. The

detailed procedure is given in Algorithm 4. It

requires      point

additions, one point doubling, and  

operations as Cheon et al.'s results.

Algorithm 4 Scalar multiplication by a split

scalar

1. Input    and .

2. Precomputation stage:

2.1 Set ← for      .

2.2 For    upto   :

2.2.1 Set  
← 


 .

2.2.2 Set  
← 


 .

2.3 For    upto   :

2.3.1 For     :

2.3.1.1 If    or   ,

← 
 

.

3. Computation of  

      


   
:

3.1 Set ←


 
; Set ←


 
.

3.2 For        :

3.2.1 Set ←  .

3.2.2 Set ←  .

3.3 Set ← .

3.4 Set ←  .

4. Output  .

Table 2 shows results for specific

parameters. Cheon et al. used different

 and  from ours for same  and  .

If we use a normal basis, we can ignore the

computation of  map. In this case, our method

is faster than Cheon et al.'s method by 12.1%

for      . Cheon et al. used

   × ,    ×  and different

weights      .

<Table 2> Performance of scalar multiplications on



18 융합보안논문지 제18권 제1호 (2018. 3)

K163 (: Addition, : Doubling,  :Computation of

the  map, : the number of scalar multiplications)

    

  

  

Ours 15 15     

Cheon 27 6     

  

  

Ours 13 12       

Cheon 22 5       

  

  

Ours 11 10       

Cheon 19 4       

  

  

Ours 10 9       

Cheon 16 4       

  

  

Ours 9 8       

Cheon 13 4       

4. Conclusion

Studies on efficiency of cryptographic

systems have been proposed sustainedly.

Recently, variants of original exponent have

been come into the spotlight. Though strict

security proof is not perfect, many trials have

been suggested. We only have focused on the

efficiency of split exponents. It would be

interesting to apply the previous security proof

techniques to schemes or protocols using split

exponents.

참고문헌

[1] E. Brickell, D. Gordon, K. McCurley and
D. Wilson, "Fast exponentiation with
precomputation", Proceedings of Eurocrypt
1992, LNCS, Vol. 658, Springer-Verlag,
pp. 200-207. 1993.

[2] J. H. Cheon, S. Jarecki, T. Kwon and M.
Lee, "Fast Exponentiation Using Split
Exponents", IEEE Transactions on
Information Theory, Vol. 57, No. 3, pp.
1816-1826, 2011.

[3] J. H. Cheon and J. H. Yi, "Fast batch

verification of multiple signatures",
Proceedings of Public Key Cryptography
2007, LNCS, Vol. 4450, Springer-Verlag,
pp. 442-457, 2007.

[4] P. D. Rooij, "Efficient exponentiation using
precomputation and vector addition chain",
Proceedings of Eurocrypt 1994, LNCS Vol.
950, Springer-Verlag, pp. 389-399, 1994.

[5] J. Hoffstein and J. H. Silverman, "Random
small hamming weight products with ap-
plications to cryptography", Discrete
Applied Mathematics, Vol. 130, No. 1, pp.
37-49, 2003.

[6] D. Knuth, 'The art of computer pro-
gramming', volume 2: seminumerical al-
gorithms, Addison-Wesley, 3rd edition,
1998.

[7] C. H. Lim and P. J. Lee, "More flexible
exponentiation with precomputation",
Proceedings of Crypto 1994, LNCS, Vol.
839, Springer-Verlag, pp. 95-107, 1994.

[8] J. Muir and D. Stinson, "Minimality and
other properties of the width- non-ad-
jacent form", Mathematics of Computation,
Vol. 75, pp. 369-384, 2006.

[9] J. Solinas, "Efficient arithmetic on Koblitz
curves", Designs, Codes and
Cryptography, Vol. 19, pp. 195-249, 2000.

[저 자소개 ]

김 홍 태 (HongTae Kim)
2003년 2월 서울대 수리과학부 학사
2006년 2월 서울대 수리과학부 석사
2013년 2월 서울대 수리과학부 박사
2013년 2월 ～ 현재 공군사관학교

기초과학과 수학교수
email : yeskafa@naver.com


