DOI QR코드

DOI QR Code

Investigation on lamb wave propagation in silicon wafer using large aperture line-focused transducer

대구경 선집속 탐촉자를 이용한 실리콘 웨이퍼에서의 램파 전파 특성 분석

  • 정윤재 (KAIST 부설 한국과학영재학교 응용음향학 연구실) ;
  • 양승수 (KAIST 부설 한국과학영재학교 응용음향학 연구실) ;
  • 유민재 (KAIST 부설 한국과학영재학교 응용음향학 연구실) ;
  • 김영환 (KAIST 부설 한국과학영재학교 응용음향학 연구실)
  • Received : 2018.03.22
  • Accepted : 2018.07.19
  • Published : 2018.07.31

Abstract

In this study, the propagation characteristics of Lamb waves in anisotropic silicon wafers of (100) and (111) direction were investigated by PVDF (Polyvinylidene Fluoride) line-focused transducer. The modified V(f,z) method was used because the Lamb waves are dispersive. For confirming the anisotropy, a line-focused transducer was used and the silicon wafer was rotated 180 degrees at intervals of 1 degree. As a result, $A_0$ and $S_0$ modes were observed. The speed of $S_0$ mode according to propagation direction showed anisotropy which is associated with the crystal structure, and the speed of $A_0$ mode was isotropic. The result is consistent with the crystal structure of silicon and the mechanism of vibration of each Lamb wave modes.

본 연구에서는 이방성 매질인 (100), (111) 방향의 실리콘 웨이퍼에서 램파의 전파 특성을 PVDF-(Polyvinylidene Fluoride) 선집속 탐촉자를 이용하여 분석하였다. 램파가 분산성을 가지기 때문에 탐촉자와 시편 사이의 거리 z를 바꿔가며 측정하는 V(f,z)방법을 변형하여 사용하였다. 또한 이방성을 확인하기 위해 선집속 탐촉자가 사용되었고, 실리콘 웨이퍼를 $1^{\circ}$ 간격으로 $180^{\circ}$ 회전시켜 측정하였다. 실험 결과, $A_0$ 모드와 $S_0$ 모드를 확인할 수 있었다. $S_0$ 모드의 속력 분포에서 각 결정 방향의 구조와 연관된 이방성을 확인할 수 있었고, $A_0$ 모드의 속력은 등방성으로 나타났다. 이는 실리콘의 결정구조와 램파의 각 모드의 진동양상과 부합하는 결과이다.

Keywords

References

  1. S. Sasaki, "Back reflection of ultrasonic wave obliquely incident to solid surface in water," Jpn. J. Appl. Phys. 2, 198 (1963). https://doi.org/10.1143/JJAP.2.198
  2. M. de Billy, L. Adler, and G. Quentin, "Measurements of backscattered leaky Lamb waves in plates," J. Acoust. Soc. Am. 75, 998-1000 (1984). https://doi.org/10.1121/1.390567
  3. S. -J. Song, Y. H. Kim, S. -D. Kwon, and Y. -M. Cheong, "Determination of phase velocity dispersion curve and group velocity of Lamb waves using backward radiation" (in Korean), J. Acoust. Soc. Kr. 22, 61-68 (2003).
  4. J. -I. Kushibiki and N. Chubachi, "Material characterization by line-focus beam acoustic microscope," IEEE Trans. Sonics Ultrason. SU-32, 189-212 (1985).
  5. D. Xiang, N. N. Hsu, and G. V. Blessing, "The design, construction and application of a large aperture lens-less line-focus PVDF transducer," Ultrasonics 34, 641-647 (1996). https://doi.org/10.1016/0041-624X(96)00058-3
  6. D. Xiang, N. N. Hsu, and G. V. Blessing, "Imaging of acoustic surface wave slowness," App. Phys. Lett. 74, 2236-2238 (1999). https://doi.org/10.1063/1.123812
  7. H. -J. Yoon, K. -L. Ha, M. -J. Kim, and J. -R. Yoon, "LSAW velocity measurement by using a PVDF line-focus ultrasonic transducer" (in Korean), J. Acoust. Soc. Kr. 20, 62-67 (2001).
  8. Y. C. Lee, "Measurements of dispersion curves of leaky Lamb waves using a lens-less line-focus transducer," Ultrasonics 39, 297-306 (2000).
  9. Y. C. Lee, "Measurements of multimode leaky Lamb waves propagating in metal sheets," Jpn J. Appl. Phys. 40, 359-363 (2001). https://doi.org/10.1143/JJAP.40.359
  10. L. Adler, S. -W. Wang, K. Bolland, M. de Billy, and G. Quentin, "Rayleigh angle backscattering of ultrasonic beam from single crystal nickel in 111 and 110 planes," J. Acoust. Soc. Am. 77, 1950-1953 (1985). https://doi.org/10.1121/1.391841
  11. H. S. Park, H. -S. Lee, H. -S. Lee, H. -B. Kim, and Y. H. Kim, "Measurements of ultrasonic surface wave velocities in silicon crystals and its comparison with finite element analysis," Jpn J. Appl. Phys. 56, 07JB04 (2017). https://doi.org/10.7567/JJAP.56.07JB04
  12. D. E. Chimenti and A. H. Nayfeh, "Leaky Lamb waves in fibrous composite laminates," J. Appl. Phys. 58, 4531-4538 (1985). https://doi.org/10.1063/1.336268
  13. J. K. Lee, H. C. Kim, M. S. Choi and Y. H. Kim, "Spectral analysis of transient elastic waves generated by point source in glass and unidirectional CFRP plates" (in Korean), J. Acoust. Soc. Kr. 13, 50-59 (1994).
  14. S. H. Rhee, J. K. Lee, and J. J. Lee, "The group velocity variation of Lamb wave in fiber reinforced composite plate," Ultrasonics, 47, 55-63 (2007). https://doi.org/10.1016/j.ultras.2007.07.005
  15. Y. Min, G. Yun, K. -M. Kim, Y. Roh, and Y. H. Kim "Comparison of slowness profiles of Lamb wave with elastic moduli and crystal structure in single crystalline silicon wafers", J. Korean Soc. Nondestr. Test. 36, 1-8 (2016). https://doi.org/10.7779/JKSNT.2016.36.1.1
  16. J. J Wortman and R. A. Evans, "Young's modulus, shear modulus, and poisson's ratio in silicon and germanium," J. Appl. Phys. 36, 153-156 (1965). https://doi.org/10.1063/1.1713863
  17. L. Cremer, M. Heckl, and E. E. Ungar. Structure-Borne Sound (Springer, Berlin, 1972), pp. 158-168.