DOI QR코드

DOI QR Code

Adsorption Characteristics of 2,4-Dichlrophenol by Magnetic Activated Carbon Prepared from Waste Citrus Peel

폐감귤박으로 제조한 자성 활성탄을 이용한 2,4-디클로로페놀의 흡착특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2018.02.27
  • Accepted : 2018.03.29
  • Published : 2018.08.10

Abstract

The removal of 2,4-dichlorophenol (2,4-dichlorophenol, 2,4-DCP) in aqueous solution was studied using the magnetic activated carbon (MAC) prepared from waste citrus peel. The adsorption characteristics of 2,4-DCP by MAC were investigated by varying the contact time, MAC dose, solution temperature, pH and 2,4-DCP concentration. The isothermal adsorption data were well explained by the Langmuir isotherm model equation and the maximum adsorption capacity calculated from the Langmuir isotherm equation was 312.5 mg/g. The adsorption kinetic data were well described by the pseudo-second-order reaction equation. The intraparticle diffusion model data indicated that both the film and intraparticle diffusion occur simultaneously during the adsorption process. The thermodynamic parameters of ${\Delta}H^o$ and ${\Delta}G^o$ have positive and negative values, respectively, indicating that the adsorption of 2,4-DCP by MAC is a spontaneous endothermic reaction. After the adsorption experiment was completed, the used MAC could be easily separated by an external magnet.

폐감귤박으로 제조한 자성 활성탄(MAC, magnetic activated carbon)을 이용하여 수용액 중의 2,4-디클로로페놀(2,4-dichlorophenol, 2,4-DCP)을 제거하는 연구하였다. 접촉시간, MAC의 투여량, 용액의 온도, pH 및 2,4-DCP 농도를 변화시켜 MAC에 의한 2,4-DCP의 흡착특성을 조사하였다. 등온 흡착 실험결과는 Langmuir 등온 모델식에 의해 잘 설명되었으며, Langmuir 등온식으로부터 구한 최대 흡착량은 312.5 mg/g이었다. 흡착속도는 유사 2차 속도식에 의해 잘 기술되었으며, 입자 내 확산 모델 자료는 흡착 과정 동안 막 확산과 입자 내 확산이 동시에 일어나는 것을 말해 주었다. 열역학적 파라미터인 ${\Delta}H^o$${\Delta}G^o$는 각각 양의 값과 음의 값을 가지므로 MAC에 의한 2,4-DCP의 흡착은 자발적이며 흡열반응으로 일어나는 것을 알 수 있었다. 흡착실험을 완료한 후 사용한 MAC는 외부에서 자석을 이용하여 쉽게 분리할 수 있었다.

Keywords

References

  1. A. Dabrowski, P. Podkoscielny, Z. Hubicki, and M. Barczak, Adsorption of phenolic compounds by activated carbon - A critical review, Chemosphere, 58, 1049-1070 (2005). https://doi.org/10.1016/j.chemosphere.2004.09.067
  2. K. Kusmierek, M. Szala, and A. Swiatkowski, Adsorption of 2,4-dichlorophenol and 2,4-dichlorophenoxyacetic acid from aqueous solutions on carbonaceous materials obtained by combustion synthesis, J. Taiwan Inst. Chem. Eng., 63, 371-378 (2016). https://doi.org/10.1016/j.jtice.2016.03.036
  3. S. Das, A. K. Banthia, and B. Adhikari, Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water, Chem. Eng. J., 138, 215-223 (2008). https://doi.org/10.1016/j.cej.2007.06.030
  4. C. C. Wang, C. M. Lee, and C. H. Kuan, Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus, Chemosphere, 41, 447-452 (2000). https://doi.org/10.1016/S0045-6535(99)00263-5
  5. J. D. Rodgers, W. Jedral, and N. J. Bunce, Electrochemical oxidation of chlorinated phenols, Environ. Sci. Technol., 33, 1453-1457 (1999). https://doi.org/10.1021/es9808189
  6. S. P. Devipriya and S. Yesodharan, Photocatalytic degradation of phenol in water using $TiO_2$ and ZnO, J. Environ. Biol., 31, 247-249 (2010).
  7. D. M. Nevskaia, A. Santianes, V. Munoz, and A. Guerrero-Ruiz, Interaction of aqueous solutions of phenol with commercial activated carbons: An adsorption and kinetic study, Carbon, 37, 1065-1074 (1999). https://doi.org/10.1016/S0008-6223(98)00301-7
  8. S. L. Wang, Y. M. Tzou, Y. H. Lu, and G. Sheng, Removal of 3-chlorophenol from water using rice-straw-based carbon, J. Hazard. Mater., 147(1-2), 313-318 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.031
  9. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, and N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157, 348-356 (2010). https://doi.org/10.1016/j.cej.2009.11.013
  10. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla, and M. Sanchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review, J. Environ. Manage., 85, 833-846 (2007). https://doi.org/10.1016/j.jenvman.2007.07.031
  11. G. Annadurai, R. S. Juang, and D. J. Lee, Adsorption of heavy metal from water using banana and orange peels, Water Sci. Technol., 47, 185-190 (2002).
  12. B. H. Hameed, Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solution, J. Hazard. Mater., 161, 253-259 (2009).
  13. S. R. Popuri, A. Jammala, K. V. N. Reddy, and K. Abburi, Biosorption of hexavalent chromium using tamarind (Tamarinddus indica) fruit shell - a comparative study, Electron. J. Biotechnol., 3, 358-367 (2007).
  14. M. Ahmedna, W. E. Marshall, and R. M. Rao, Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties, Bioresour Technol., 71(2), 113-123 (2000). https://doi.org/10.1016/S0960-8524(99)00070-X
  15. Z. Reddad, C. Gerente, Y. Andres, and P. Lecloirec, Adsorption of several metal ions onto a low cost biosorbent: Kinetic and equilibrium studies, Environ. Sci. Technol., 36, 2067-2073 (2002). https://doi.org/10.1021/es0102989
  16. C. H. Lee, S. K. Kam, and M. G. Lee, Adsorption characteristics analysis of 2,4-dichlorophenol in aqueous solution with activated carbon prepared from waste citrus peel using response surface modeling approach, Korean Chem. Eng. Res., 55(5), 723-730 (2017). https://doi.org/10.9713/KCER.2017.55.5.723
  17. S. K. Kam and M. G. Lee, Response surface modeling for the adsorption of dye eosin Y by activated carbon prepared from waste citrus peel, Appl. Chem. Eng., 29(3), 270-277 (2018). https://doi.org/10.14478/ACE.2017.1130
  18. M. Schwickardi, S. Olejnik, E. L. Salabas, W. Schmidt, and F. Schuth, Scalable synthesis of activated carbon with superparamagnetic properties, Chem. Commun., 38, 3987-3989 (2006).
  19. S. S. Banerjee and D. H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent, J. Hazard. Mater., 147, 792-799 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.079
  20. C. F. Chang, P. H. Lin, and W. Holl, Aluminum-type superparamagnetic adsorbents: synthesis and application on fluoride removal, Colloids Surf., 280, 194-202 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.011
  21. N. Yang, S. Zhu, D. Zhang, and S. Xu, Synthesis and properties of magnetic $Fe_3O_4$ activated carbon nanocomposite particles for dye removal, Mater. Lett., 62, 645-647 (2008). https://doi.org/10.1016/j.matlet.2007.06.049
  22. J. S. Shon, D. B. Kim, T. I. Kim, E. J. Kim, C. H. Lee, S. K. Kam, and M. G. Lee, Adsorption of 2,4-dichlrophenol by magnetic activated carbon prepared from Jeju-waste citrus peel, Proceedings of 2016 Annual Conf. of the Korean Soc. Environ. Sci., Nov. 3-5, Daegu Univ., Korea (2016).
  23. F. W. Shaarani and B. H. Hameed, Ammonia-modified activated carbon for the adsorption of 2,4-dichlorophenol, Chem. Eng. J., 169, 180-185 (2011). https://doi.org/10.1016/j.cej.2011.03.002
  24. M. Sathishkumar, A. R. Binupriya, D. Kavitha, R. Selvakumar, R. Jayabalan, J. G. Choi, and S. E. Yun, Adsorption potential of maize cob carbon for 2,4-dichlorophenol removal from aqueous solutions: Equilibrium, kinetics and thermodynamics modeling, Chem. Eng. J., 147, 265-271 (2009). https://doi.org/10.1016/j.cej.2008.07.020
  25. B. H. Hameed, L. H. Chin, and S. Rengaraj, Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust, Desalination, 225, 185-198 (2008). https://doi.org/10.1016/j.desal.2007.04.095
  26. C. H. Lee, J. M. Park, and M. G. Lee, Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A : Adsorption isotherm and kinetics, J. Environ. Sci. Int., 24, 151-162 (2015). https://doi.org/10.5322/JESI.2015.24.2.151
  27. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar., 24, 1-39 (1898).
  28. Y. S. Ho and G. McKay, Psuedo-second order model for sorption processes, Process Biochem., 34(5), 451-465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  29. J. P. Wang, H. M. Feng, and H. Q. Yu, Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber, J. Hazard. Mater., 144(1-2), 200-207 (2007). https://doi.org/10.1016/j.jhazmat.2006.10.003
  30. W. J. Weber and J. C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89, 31-60 (1963).
  31. F. W. Shaarani and B. H. Hameed, Batch adsorption of 2,4-dichlorophenol onto activated carbon derived from agricultural waste, Desalination, 255, 159-164 (2010). https://doi.org/10.1016/j.desal.2009.12.029
  32. V. C. Srivastava, M. M. Swamy, I. D. Mall, B. Prasad, and I. M. Mishra, Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids Surf. A, 272, 89-104 (2006). https://doi.org/10.1016/j.colsurfa.2005.07.016
  33. I. Langmuir, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-140 (1918). https://doi.org/10.1021/ja02242a004
  34. H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
  35. M. Sathishkumar, K. Vijayaraghavan, A. R. Binupriya, A. M. Stephan, J. G. Choi, and S. E. Yun, Porogen effect on characteristics of banana pith carbon and the sorption of dichlorophenols, J. Colloid Interface Sci., 320(1), 22-29 (2008). https://doi.org/10.1016/j.jcis.2007.12.011
  36. A. Bhatnagar and A. K. Minocha, Adsorptive removal of 2,4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement, J. Hazard. Mater., 168, 1111-1117 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.151
  37. M. Z., A. Alam, S. A. Muyibi, and J. Toramae, Statistical optimization of adsorption processes for removal of 2,4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches, J. Environ. Sci., 19, 674-677 (2007). https://doi.org/10.1016/S1001-0742(07)60113-2
  38. A. A. M. Daifullah and B. S. Girgis, Removal of some substituted phenols by activated phenols by activated carbon obtained from agricultural waste, Water Res., 32, 1169-1177 (1998). https://doi.org/10.1016/S0043-1354(97)00310-2