DOI QR코드

DOI QR Code

Botulinum toxin type A enhances the inhibitory spontaneous postsynaptic currents on the substantia gelatinosa neurons of the subnucleus caudalis in immature mice

  • Jang, Seon-Hui (Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University) ;
  • Park, Soo-Joung (Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University) ;
  • Lee, Chang-Jin (Research and Development Division, Hugel Inc.) ;
  • Ahn, Dong-Kuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Han, Seong-Kyu (Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Chonbuk National University)
  • Received : 2018.02.14
  • Accepted : 2018.06.07
  • Published : 2018.09.01

Abstract

Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1-10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin ($0.5{\mu}M$). In addition, the frequency of sIPSCs in the presence of CNQX ($10{\mu}M$) and AP5 ($20{\mu}M$) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.

Keywords

References

  1. Huang W, Foster JA, Rogachefsky AS. Pharmacology of botulinum toxin. J Am Acad Dermatol. 2000;43:249-259. https://doi.org/10.1067/mjd.2000.105567
  2. Pellizzari R, Rossetto O, Schiavo G, Montecucco C. Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans R Soc Lond B Biol Sci. 1999;354:259-268. https://doi.org/10.1098/rstb.1999.0377
  3. Simpson LL. The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev. 1981;33:155-188.
  4. Peng Chen Z, Morris JG Jr, Rodriguez RL, Shukla AW, Tapia-Nunez J, Okun MS. Emerging opportunities for serotypes of botulinum neurotoxins. Toxins (Basel). 2012;4:1196-1222. https://doi.org/10.3390/toxins4111196
  5. Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev. 2000;80:717-766. https://doi.org/10.1152/physrev.2000.80.2.717
  6. Kim DW, Lee SK, Ahnn J. Botulinum toxin as a pain killer: players and actions in antinociception. Toxins (Basel). 2015;7:2435-2453. https://doi.org/10.3390/toxins7072435
  7. Pavone F, Luvisetto S. Botulinum neurotoxin for pain management: insights from animal models. Toxins (Basel). 2010;2:2890-2913. https://doi.org/10.3390/toxins2122890
  8. Brin MF, Binder WJ, Blitzer A, Schenrock L, Pogoda JM. Botulinum toxin type A for pain and headache. In: Brin MF, Hallett M, Jankovic J, editors. Scientific and therapeutic aspects of botulinum toxin. 1st ed. Philadelphia: Lippincott Williams & Wilkins; 2002. p.233-250.
  9. Wheeler AH. Therapeutic uses of botulinum toxin. Am Fam Physician. 1997;55:541-545, 548.
  10. Truong DD, Jost WH. Botulinum toxin: clinical use. Parkinsonism Relat Disord. 2006;12:331-355. https://doi.org/10.1016/j.parkreldis.2006.06.002
  11. Bach-Rojecky L, Lackovic Z. Antinociceptive effect of botulinum toxin type a in rat model of carrageenan and capsaicin induced pain. Croat Med J. 2005;46:201-208.
  12. Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107:125-133. https://doi.org/10.1016/j.pain.2003.10.008
  13. Luvisetto S, Marinelli S, Lucchetti F, Marchi F, Cobianchi S, Rossetto O, Montecucco C, Pavone F. Botulinum neurotoxins and formalin-induced pain: central vs. peripheral effects in mice. Brain Res. 2006;1082:124-131. https://doi.org/10.1016/j.brainres.2006.01.117
  14. Lee WH, Shin TJ, Kim HJ, Lee JK, Suh HW, Lee SC, Seo K. Intrathecal administration of botulinum neurotoxin type A attenuates formalin-induced nociceptive responses in mice. Anesth Analg. 2011;112:228-235. https://doi.org/10.1213/ANE.0b013e3181ffa1d7
  15. Bach-Rojecky L, Lackovic Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94:234-238. https://doi.org/10.1016/j.pbb.2009.08.012
  16. Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11:57-91. https://doi.org/10.1177/10454411000110010401
  17. Cervero F, Iggo A. The substantia gelatinosa of the spinal cord: a critical review. Brain. 1980;103:717-772. https://doi.org/10.1093/brain/103.4.717
  18. Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010;11:823-836. https://doi.org/10.1038/nrn2947
  19. Matak I, Lackovic Z. Botulinum toxin A, brain and pain. Prog Neurobiol. 2014;119-120:39-59. https://doi.org/10.1016/j.pneurobio.2014.06.001
  20. Wheeler A, Smith HS. Botulinum toxins: mechanisms of action, antinociception and clinical applications. Toxicology. 2013;306:124-146. https://doi.org/10.1016/j.tox.2013.02.006
  21. Dressler D. Botulinum toxin therapy: its use for neurological disorders of the autonomic nervous system. J Neurol. 2013;260:701-713. https://doi.org/10.1007/s00415-012-6615-2
  22. Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Longdistance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008;28:3689-3696. https://doi.org/10.1523/JNEUROSCI.0375-08.2008
  23. Matak I, Bach-Rojecky L, Filipovic B, Lackovic Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience. 2011;186:201-207. https://doi.org/10.1016/j.neuroscience.2011.04.026
  24. Filipovic B, Matak I, Bach-Rojecky L, Lackovic Z. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy. PLoS One. 2012;7:e29803. https://doi.org/10.1371/journal.pone.0029803
  25. Kim HJ, Lee GW, Kim MJ, Yang KY, Kim ST, Bae YC, Ahn DK. Antinociceptive effects of transcytosed botulinum neurotoxin type A on trigeminal nociception in rats. Korean J Physiol Pharmacol. 2015;19:349-355. https://doi.org/10.4196/kjpp.2015.19.4.349
  26. Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M. Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci. 2011;31:15650-15659. https://doi.org/10.1523/JNEUROSCI.2618-11.2011
  27. Guy N, Chalus M, Dallel R, Voisin DL. Both oral and caudal parts of the spinal trigeminal nucleus project to the somatosensory thalamus in the rat. Eur J Neurosci. 2005;21:741-754. https://doi.org/10.1111/j.1460-9568.2005.03918.x
  28. Davies AJ, North RA. Electrophysiological and morphological properties of neurons in the substantia gelatinosa of the mouse trigeminal subnucleus caudalis. Pain. 2009;146:214-221. https://doi.org/10.1016/j.pain.2009.07.038
  29. McMahon HT, Foran P, Dolly JO, Verhage M, Wiegant VM, Nicholls DG. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J Biol Chem. 1992;267:21338-21343.
  30. Durham PL, Cady R, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache. 2004;44:35-42; discussion 42-43. https://doi.org/10.1111/j.1526-4610.2004.04007.x
  31. Morris JL, Jobling P, Gibbins IL. Botulinum neurotoxin A attenuates release of norepinephrine but not NPY from vasoconstrictor neurons. Am J Physiol Heart Circ Physiol. 2002;283:H2627-2635. https://doi.org/10.1152/ajpheart.00477.2002
  32. Nakov R, Habermann E, Hertting G, Wurster S, Allgaier C. Effects of botulinum A toxin on presynaptic modulation of evoked transmitter release. Eur J Pharmacol. 1989;164:45-53. https://doi.org/10.1016/0014-2999(89)90229-X
  33. Beske PH, Scheeler SM, Adler M, McNutt PM. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing. Front Cell Neurosci. 2015;9:159.
  34. Akaike N, Ito Y, Shin MC, Nonaka K, Torii Y, Harakawa T, Ginnaga A, Kozaki S, Kaji R. Effects of A2 type botulinum toxin on spontaneous miniature and evoked transmitter release from the rat spinal excitatory and inhibitory synapses. Toxicon. 2010;56:1315-1326. https://doi.org/10.1016/j.toxicon.2010.07.015
  35. Drinovac V, Bach-Rojecky L, Lackovic Z. Association of antinociceptive action of botulinum toxin type A with GABA-A receptor. J Neural Transm (Vienna). 2014;121:665-669. https://doi.org/10.1007/s00702-013-1150-6
  36. Matteoli M, Pozzi D, Grumelli C, Condliffe SB, Frassoni C, Harkany T, Verderio C. The synaptic split of SNAP-25: different roles in glutamatergic and GABAergic neurons? Neuroscience. 2009;158:223-230. https://doi.org/10.1016/j.neuroscience.2008.03.014
  37. Waldenstrom A, Thelin J, Thimansson E, Levinsson A, Schouenborg J. Developmental learning in a pain-related system: evidence for a cross-modality mechanism. J Neurosci. 2003;23:7719-7725. https://doi.org/10.1523/JNEUROSCI.23-20-07719.2003
  38. Ruiz-Medina J, Baulies A, Bura SA, Valverde O. Paclitaxel-induced neuropathic pain is age dependent and devolves on glial response. Eur J Pain. 2013;17:75-85. https://doi.org/10.1002/j.1532-2149.2012.00172.x
  39. Park SA, Yang EJ, Han SK, Park SJ. Age-related changes in the effects of 5-hydroxytryptamine on substantia gelatinosa neurons of the trigeminal subnucleus caudalis. Neurosci Lett. 2012;510:78-81. https://doi.org/10.1016/j.neulet.2011.12.069
  40. Baccei ML, Fitzgerald M. Development of GABAergic and glycinergic transmission in the neonatal rat dorsal horn. J Neurosci. 2004;24:4749-4757. https://doi.org/10.1523/JNEUROSCI.5211-03.2004

Cited by

  1. Cervical Dystonia Is Associated With Aberrant Inhibitory Signaling Within the Thalamus vol.11, pp.None, 2020, https://doi.org/10.3389/fneur.2020.575879
  2. Botulinum Neurotoxins in Central Nervous System: An Overview from Animal Models to Human Therapy vol.13, pp.11, 2021, https://doi.org/10.3390/toxins13110751