DOI QR코드

DOI QR Code

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant

복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가

  • Lee, Boo-Youn (Dept. of Mechanical & Automotive Engineering, Keimyung University)
  • 이부윤 (계명대학교 기계자동차공학전공)
  • Received : 2018.05.03
  • Accepted : 2018.08.03
  • Published : 2018.08.31

Abstract

Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

복합발전플랜트 배열회수보일러 고압증발기의 기기인 분배기에 대하여 설계조건과 과도운전조건을 고려하여 응력 및 피로에 관한 안전성을 평가하였다. 먼저, 배열회수보일러 튜브군 모델의 해석결과로부터 분배기의 상부에 연결되는 수직 강수관, 하부에 연결되는 수직 급수배관, 열교환기의 입구헤더로 향하는 수평방향의 방사형 배관들에 대하여 노즐하중을 도출하였다. 이와 같이 구한 노즐하중은 분배기의 상세모델에 대한 설계조건과 과도운전조건의 해석 시에 노즐 단면에 가해지는 하중으로 사용하였다. 분배기의 상세한 해석모델을 만들고 설계조건의 내압과 노즐하중에 대한 정적구조해석을 수행하였다. 설계조건에서 최대응력은 수평방향 배관의 노즐 보어에서 발생하였다. 최대응력 위치의 국부 1차 막응력이 쉘과 노즐에서 허용기준보다 작으므로 ASME Code의 허용기준을 만족하는 것으로 나타났다. 배열회수보일러에 주어진 8가지 과도운전조건을 고려하여, 분배기의 상세모델에 대하여 열해석을 수행하고, 과도운전 시의 내압, 노즐하중, 열하중에 대한 과도구조해석을 수행하였다. 과도운전조건에서 최대응력은 분배기 상부의 수직 강수관 노즐 부위에서 발생하였다. ASME Code에 의거하여 수직 강수관 노즐 부위의 피로수명을 평가하였다. 결과적으로 계산된 누적피로사용계수가 허용기준보다 작으므로 기대수명 동안에 피로파손에 관하여 안전한 것으로 나타났다.

Keywords

References

  1. S. H. Baek, The Monthly Report of Major Electric Power Statistics, Vol. 448, No. 2, Korea Electric Power Corporation, 2016.
  2. V. R. Eriksen, Heat Recovery Steam Generator Technology, Woodhead Publishing, 2017.
  3. ASME Boiler and Pressure Vessel Code Section VIII Division 2: Alternate Rules, Rules for Construction of Pressure Vessels, American Society of Mechanical Engineers, 2010.
  4. EN 13445-3:2009, Unfired Pressure Vessels - Part 3: Design, European Committee for Standardization, 2009.
  5. T. H. Kim, J. S. Choi, J. S. Han, "Thermal-structural Analysis and Fatigue Life Evaluation of a Parallel Slide Gate Valve in Accordance with ASME B&PVC", Trans. Korean Soc. Mech. Eng. A, Vol.41, No.2, pp.157-164, 2017. DOI: https://dx.doi.org/10.3795/KSME-A.2017.41.2.157
  6. C. H. Chong, J. I. Song, "Stress Behaviors of Superheater Tubes under Load Change Operation in HRSG," Journal of the Korean Solar Energy Society, Vol.28, No.6, pp.33-39, 2008.
  7. J. B. Kim, S. H. Hwang, Chung J. C., "The CFD Analysis for the Fatigue Life Evaluation of HRSG Bumper", Proc. of KSME Autumn Conference, pp. 1280-1285, 2015.
  8. S. M. Choi, S. H. Kim, P. I. Kim, S. H. Ko, H. B. Chung, B. G. Han, H. H. Cho, "Effect of Installing Heat Sink to Reduce Thermal Stress on HRSG Casing", Proc. of KSME Autumn Conference, pp. 12A003, 2014.
  9. C. H. Chong, H. G. Kim, Y. J. Choi, C. S. Lee, J. W. Ha, "Design Life Analysis for HRSG", Proc. of KSME Autumn Conference, pp. 55-60, 2004.
  10. S. H. Hwang, H. G. Kim, C. Y. Seon, C. S. Lee, B. Y. Lee, "Fatigue Life Evaluation for HP Drum in HRSG According to EN Code", Proc. of KSME Autumn Conference, pp. 506-511, 2010.
  11. B. Y. Lee, "Evaluation of Stress and Fatigue of High-Pressure Drum for Heat Recovery Steam Generator According to European Code", Trans. Korean Soc. Mech. Eng. A, Submitted, 2018.
  12. B. Y. Lee, "Evaluation of Safety of Corrosion Fatigue of High Pressure Drum for Heat Recovery Steam Generator Using Transient Thermal Stress Analysis", J. Korean Soc. Precis. Eng., Submitted, 2018.
  13. B. Y. Lee, "Evaluation of Stress and Fatigue Life of Tube Bundle and Header for High-Pressure Evaporator of Heat Recovery Steam Generator," Trans. Korean Soc. Mech. Eng. A, Submitted, 2018.
  14. G. Volpi, M. Penati, G. Silva, "Heat Recovery Steam Generators for Large Combined Cycle Plants (250 MWe GT Output): Experiences with Different Design Options and Promising Improvements by Once-through Technology Development," Proc. of Power Gen Europe 2005, Milan, 28-30 June, 2005.
  15. ANSYS User's Manual Version 11, ANSYS Inc., 2007.
  16. ASME Boiler and Pressure Vessel Code Section II Part D: Materials Properties, American Society of Mechanical Engineers, 2010. ISBN: 978-0791832349
  17. G. B. Richard, J. N. Keith, Shigley's Mechanical Engineering Design, 9th Ed., McGraw-Hill, 2013.
  18. J. G. Coller, J. R. Thome, Convective Boiling and Condensation, Oxford, 1994.
  19. S. W. Churchill, "Free Convection Around Immersed Bodies", in G. F. Hewitt (Ed.), Heat Exchanger Handbook, Section 2.5.7, Begell House, 2002.