DOI QR코드

DOI QR Code

Mitochondrial dysfunction reduces the activity of KIR2.1 K+ channel in myoblasts via impaired oxidative phosphorylation

  • Woo, JooHan (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Kim, Hyun Jong (Department of Physiology, Dongguk University College of Medicine) ;
  • Nam, Yu Ran (Department of Physiology, Dongguk University College of Medicine) ;
  • Kim, Yung Kyu (Department of Physiology, Dongguk University College of Medicine) ;
  • Lee, Eun Ju (Department of Medical Biotechnology, Yeungnam University) ;
  • Choi, Inho (Department of Medical Biotechnology, Yeungnam University) ;
  • Kim, Sung Joon (Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Lee, Wan (Channelopathy Research Center (CRC), Dongguk University College of Medicine) ;
  • Nam, Joo Hyun (Department of Physiology, Dongguk University College of Medicine)
  • Received : 2018.07.16
  • Accepted : 2018.08.29
  • Published : 2018.11.01

Abstract

Myoblast fusion depends on mitochondrial integrity and intracellular $Ca^{2+}$ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with $[Ca^{2+}]_i$ regulation in normal and mitochondrial DNA-depleted(${\rho}0$) L6 myoblasts. The ${\rho}0$ myoblasts showed impaired myotube formation. The inwardly rectifying $K^+$ current ($I_{Kir}$) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated $Ca^{2+}$ channel and $Ca^{2+}$-activated $K^+$ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the $I_{Kir}$. The ${\rho}0$ myoblasts showed depolarized resting membrane potential and higher basal $[Ca^{2+}]_i$. Our results demonstrated the specific downregulation of $I_{Kir}$ by dysfunctional mitochondria. The resultant depolarization and altered $Ca^{2+}$ signaling might be associated with impaired myoblast fusion in ${\rho}0$ myoblasts.

Keywords

References

  1. Abmayr SM, Pavlath GK. Myoblast fusion: lessons from flies and mice. Development. 2012;139:641-656. https://doi.org/10.1242/dev.068353
  2. Buckingham M. Skeletal muscle formation in vertebrates. Curr Opin Genet Dev. 2001;11:440-448. https://doi.org/10.1016/S0959-437X(00)00215-X
  3. David JD, See WM, Higginbotham CA. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol. 1981;82:297-307. https://doi.org/10.1016/0012-1606(81)90453-X
  4. Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol. 1998;14:167-196. https://doi.org/10.1146/annurev.cellbio.14.1.167
  5. Friday BB, Pavlath GK. A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci. 2001;114:303-310.
  6. Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A. 1996;93:9366-9373. https://doi.org/10.1073/pnas.93.18.9366
  7. Darbellay B, Arnaudeau S, Konig S, Jousset H, Bader C, Demaurex N, Bernheim L. STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem. 2009;284:5370-5380. https://doi.org/10.1074/jbc.M806726200
  8. Cooper E. A new role for ion channels in myoblast fusion. J Cell Biol. 2001;153:F9-12. https://doi.org/10.1083/jcb.153.4.F9
  9. Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L. T-type alpha 1H $Ca^{2+}$ channels are involved in $Ca^{2+}$ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci U S A. 2000;97:7627-7632. https://doi.org/10.1073/pnas.97.13.7627
  10. Fischer-Lougheed J, Liu JH, Espinos E, Mordasini D, Bader CR, Belin D, Bernheim L. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. J Cell Biol. 2001;153:677-686. https://doi.org/10.1083/jcb.153.4.677
  11. Konig S, Beguet A, Bader CR, Bernheim L. The calcineurin pathway links hyperpolarization (Kir2.1)-induced $Ca^{2+}$ signals to human myoblast differentiation and fusion. Development. 2006;133:3107-3114. https://doi.org/10.1242/dev.02479
  12. Tanaka S, Ono Y, Sakamoto K. DCEBIO facilitates myogenic differentiation via intermediate conductance $Ca^{2+}$ activated $K^{+}$ channel activation in C2C12 myoblasts. J Pharmacol Sci. 2017;133:276-279. https://doi.org/10.1016/j.jphs.2017.02.005
  13. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505:335-343. https://doi.org/10.1038/nature12985
  14. Wagatsuma A, Sakuma K. Mitochondria as a potential regulator of myogenesis. Sci World J. 2013;2013:593267.
  15. Biswas G, Adebanjo OA, Freedman BD, Anandatheerthavarada HK, Vijayasarathy C, Zaidi M, Kotlikoff M, Avadhani NG. Retrograde $Ca^{2+}$ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of interorganelle crosstalk. EMBO J. 1999;18:522-533. https://doi.org/10.1093/emboj/18.3.522
  16. Park SY, Choi GH, Choi HI, Ryu J, Jung CY, Lee W. Depletion of mitochondrial DNA causes impaired glucose utilization and insulin resistance in L6 GLUT4myc myocytes. J Biol Chem. 2005;280:9855-9864. https://doi.org/10.1074/jbc.M409399200
  17. Nam JH, Lee DU. Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1 channel inhibition. J Dermatol Sci. 2016;84:305-313. https://doi.org/10.1016/j.jdermsci.2016.09.017
  18. Ma X, Jin M, Cai Y, Xia H, Long K, Liu J, Yu Q, Yuan J. Mitochondrial electron transport chain complex III is required for antimycin A to inhibit autophagy. Chem Biol. 2011;18:1474-1481. https://doi.org/10.1016/j.chembiol.2011.08.009
  19. Okada Y. Patch clamp techniques: from beginning to advanced protocols. Tokyo: Springer; 2012.
  20. Bernheim L, Bader CR. Human myoblast differentiation: $Ca^{2+}$ channels are activated by $K^{+}$ channels. News Physiol Sci. 2002;17:22-26.
  21. D'Avanzo N, Cheng WW, Doyle DA, Nichols CG. Direct and specific activation of human inward rectifier $K^{+}$ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2010;285:37129-37132. https://doi.org/10.1074/jbc.C110.186692
  22. Kim KS, Jang JH, Lin H, Choi SW, Kim HR, Shin DH, Nam JH, Zhang YH, Kim SJ. Rise and fall of Kir2.2 current by TLR4 signaling in human monocytes: PKC-dependent trafficking and PI3Kmediated PIP2 decrease. J Immunol. 2015;195:3345-3354. https://doi.org/10.4049/jimmunol.1500056
  23. Alesutan I, Munoz C, Sopjani M, Dermaku-Sopjani M, Michael D, Fraser S, Kemp BE, Seebohm G, Foller M, Lang F. Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochem Biophys Res Commun. 2011;408:505-510. https://doi.org/10.1016/j.bbrc.2011.04.015
  24. Zhao B, Qiang L, Joseph J, Kalyanaraman B, Viollet B, He YY. Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival. Genes Dis. 2016;3:82-87. https://doi.org/10.1016/j.gendis.2015.12.002
  25. Engbers JD, Anderson D, Zamponi GW, Turner RW. Signal processing by T-type calcium channel interactions in the cerebellum. Front Cell Neurosci. 2013;7:230.
  26. Lee N, Jeong S, Kim KC, Kim JA, Park JY, Kang HW, Perez-Reyes E, Lee JH. $Ca^{2+}$ egulation of Cav3.3 T-type $Ca^{2+}$ channel is mediated by calmodulin. Mol Pharmacol. 2017;92:347-357. https://doi.org/10.1124/mol.117.108530
  27. Scrimgeour NR, Wilson DP, Barritt GJ, Rychkov GY. Structural and stoichiometric determinants of $Ca^{2+}$ release-activated $Ca^{2+}$ (CRAC) channel $Ca^{2+}$-dependent inactivation. Biochim Biophys Acta. 2014;1838:1281-1287. https://doi.org/10.1016/j.bbamem.2014.01.019