DOI QR코드

DOI QR Code

Improved heat-spreading properties of fluorinated graphite/epoxy film

  • Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Han, Jeong-In (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Da-Hee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2018.03.12
  • Accepted : 2018.03.27
  • Published : 2018.10.31

Abstract

Keywords

References

  1. Kim K, Kim M, Hwang Y, Kim J. Chemically modified boron nitride- epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram Int, 40, 2047 (2014). https://doi.org/10.1016/j.ceramint.2013.07.117.
  2. Kim JH, Kim KH, Park MS, Bae TS, Lee YS. Cu nanoparticle-embedded carbon foams with improved compressive strength and thermal conductivity. Carbon Lett, 17, 65 (2016). https://doi.org/10.5714/cl.2016.17.1.065.
  3. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci, 36, 914 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.004.
  4. Kim K, Kim J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos Part B Eng, 93, 67 (2016). https://doi.org/10.1016/j.compositesb.2016.02.052.
  5. Yuan W, Xiao Q, Li L, Xu T. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl Therm Eng, 106, 1067 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.089.
  6. Donnay M, Tzavalas S, Logakis E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos Sci Technol, 110, 152 (2015). https://doi.org/10.1016/j.compscitech.2015.02.006.
  7. Yu C, Zhang J, Li Z, Tian W, Wang L, Luo J, Li Q, Fan X, Yao Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos Part A Appl Sci Manuf, 98, 25 (2017). https://doi.org/10.1016/j.compositesa.2017.03.012.
  8. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. Graphite nanoplatelet: epoxy composite thermal interface materials. J Phys Chem C, 111, 7565 (2007). https://doi.org/10.1021/jp071761s.
  9. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett, 8, 902 (2008). https://doi.org/10.1021/nl0731872.
  10. Wang Z, Qi R, Wang J, Qi S. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceram Int, 41, 13541 (2015). https://doi.org/10.1016/j.ceramint.2015.07.148.
  11. Shou QL, Cheng JP, Fang JH, Lu FH, Zhao JJ, Tao XY, Liu F, Zhang XB. Thermal conductivity of poly vinylidene fluoride composites filled with expanded graphite and carbon nanotubes. J Appl Polym Sci, 127, 1697 (2013). https://doi.org/10.1002/app.37876.
  12. Chu K, Jia C, Li W. Thermal conductivity enhancement in carbon nanotube/Cu-Ti composites. Appl Phys A, 110, 269 (2013). https://doi.org/10.1007/s00339-012-7450-0.
  13. Che J, Cagin T, Goddard WA III. Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65 (2000). https://doi.org/10.1088/0957-4484/11/2/305.
  14. Wang F, Drzal LT, Qin Y, Huang Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci, 50, 1082 (2015). https://doi.org/10.1007/s10853-014-8665-6.
  15. Shahil KMF, Balandin AA. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun, 152, 1331 (2012). https://doi.org/10.1016/j.ssc.2012.04.034.
  16. Nika DL, Pokatilov EP, Askerov AS, Balandin AA. Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B, 79, 155413 (2009). https://doi.org/10.1103/physrevb.79.155413.
  17. Raunija TSK, Supriya N. Thermo-electrical properties of randomly oriented carbon/carbon composite. Carbon Lett, 22, 25 (2017). https://doi.org/10.5714/CL.2017.22.025.
  18. Kim JH, Lee HI, Lee YS. The enhanced thermal and mechanical properties of graphite foams with a higher crystallinity and apparent density. Mater Sci Eng A, 696, 174 (2017). https://doi.org/10.1016/j.msea.2017.04.071.
  19. Lee C, Han YJ, Seo YD, Nakabayashi K, Miyawaki J, Santamaria R, Menendez R, Yoon SH, Jang J. $C_4F_8$ plasma treatment as an effective route for improving rate performance of natural/synthetic graphite anodes in lithium ion batteries. Carbon, 103, 28 (2016). https://doi.org/10.1016/j.carbon.2016.02.060.
  20. Lee YS. Syntheses and properties of fluorinated carbon materials. J Fluorine Chem, 128, 392 (2007). https://doi.org/10.1016/j.jfluchem.2006.11.014.
  21. Yun SM, Kim JW, Jung MJ, Nho YC, Kang PH, Lee YS. An XPS study of oxyfluorinated multiwalled carbon nano tubes. Carbon Lett, 8, 292 (2007). https://doi.org/10.5714/cl.2007.8.4.292.
  22. Im JS, Kim JG, Lee SH, Lee YS. Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids Surf A Physicochem Eng Aspects, 364, 151 (2010). https://doi.org/10.1016/j.colsurfa.2010.05.015.
  23. Im JS, Kim JG, Lee YS. Fluorination effects of carbon black additives for electrical properties and EMI shielding efficiency by improved dispersion and adhesion. Carbon, 47, 2640 (2009). https://doi.org/10.1016/j.carbon.2009.05.017.
  24. Kim C, Baek JY, Kim DH, Kim JT, Lopez DH, Kim T, Kim H. Decoupling of thermal and electrical conductivities by adjusting the anisotropic nature in tungsten diselenide causing significant enhancement in thermoelectric performance. J Ind Eng Chem, 60, 458 (2018). https://doi.org/10.1016/j.jiec.2017.11.033.