DOI QR코드

DOI QR Code

네트워크 가상화 환경에서 끊김 없는 핸드오버를 위한 일반 AP 활용

Utilization of Legacy APs for Seamless Handover in a SDN Environment

  • 이형봉 (강릉원주대학교 컴퓨터공학과) ;
  • 권기현 (강원대학교 전자정보통신공학부)
  • Lee, Hyung-Bong (Department of Computer Science & Engineering, Gangneung-Wonju National University) ;
  • Kwon, Ki-Hyeon (Department of Electronics, Information & Communication Engineering, Kangwon National University)
  • 투고 : 2018.07.28
  • 심사 : 2018.08.28
  • 발행 : 2018.08.31

초록

무선 단말의 이동성을 지원하기 위해서는 하나의 AP (Access Point) 처리 영역에 적어도 2개 이상의 AP를 중복배치하여 통신영역을 이어야 한다. 이러한 무선랜 환경에서 무선 네트워크의 효과적인 활용과 사용자에게 지원되는 서비스의 극대화 관점에서 끊김 없는 핸드오버는 매우 중요한 논점 중의 하나이다. 한편, 최근 급속도로 부상하고 있는 네트워크 가상화는 네트워크 관리의 유연성, 세밀한 제어, 편의성 등을 혁명적으로 제고하고 있다. 네트워크 가상화는 원래 유선랜 위주의 데이터센터 내에서 스위치들 간의 통신 홉을 줄이거나 우회하는 플로우 라우팅 테이블을 실시간 제어함으로써 사용자 지연시간을 단축시키고 네트워크 견고성을 높인다. 이 연구에서는 유선랜 위주의 네트워크 가상화 플랫폼 OpenFlow를 일반 AP를 사용하는 밀집된 무선 네트워크 환경에 적용하여 디지털 콘텐츠의 스트리밍 서비스를 위한 끊김 없는 핸드오버를 실현하고 평가한다.

In order to support the mobility of the wireless devices, at least two APs (Access Points) must be arranged in a single AP area to maintain communication area. In the WLAN (Wireless LAN) environment, seamless handover is one of the most important issues in terms of effective utilization of wireless networks and maximization of services for users. On the other hand, SDN (Software-Defined Networking), which is emerging rapidly in recent years, is revolutionizing network management in terms of flexibility, fine control, and convenience. SDN originally reduces latency time or increases network robustness by real-time flow table control reducing or bypassing paths between switches in LAN-based data centers. In this study, we apply OpenFlow, a SDN platform focused on wired LAN, to a dense WLAN environment using legacy APs to implement and evaluate seamless handover for streaming services of digital contents.

키워드

참고문헌

  1. Wikipedia SDN, https://en.wikipedia.org/wiki/Software-defined_networking
  2. N. McKeown, T. Anderson, H. Balakrishnan et al., "OpenFlow: Enabling Innovation in Campus Networks," ACM SIGCOMM Computer Communication Review archive, Vol. 38, Issue 2, pp. 69-74, April 2008.
  3. S. Lee, S. Chung, ""Performance Improvement via Flow-based Routing on OpenFlow-based Wireless Mesh Networks," Journal of KIISE: Information Networking, Vol. 40, No. 4, pp. 187-199, August 2013.
  4. A. Detti, C. Pisa, S. Salsano, N. B-Melazzi, "Wireless Mesh Software Defined Networks (wmSDN)," Proceeding of IEEE Conference on Wireless and Mobile Computing, pp. 89-95, October, 2013.
  5. W. Kim, S. Chung, H. Choi, and M. Do, "Contents Routing in the OpenFlow-based Wireless Mesh Network Environment," Journal of KIISE: Information Networking, Vol. 41, No. 10, pp. 810-823, October 2014. https://doi.org/10.5626/JOK.2014.41.10.810
  6. L. S. Puthalath, "Programming the Enterprise WLAN: An SDN Approach," Master's Thesis, Technical University of Lisboa, pp. 1-86, 2012.
  7. IETF RFC5415, Control And Provisioning of Wireless Access Points (CAPWAP) Protocol Specification [Internet]. Available: https://tools.ietf.org/html/rfc5415.
  8. Wikipedia CAPWAP, https://en.wikipedia.org/wiki/CAPWAP
  9. Cicso Inc., Cisco Product Quick Reference Guide [Internet], Available: http://www.cisco.com/c/en/us/qrg/index.html
  10. IEEE, IEEE 802.11-2016 Standards [Internet], Available: http://standards.ieee.org/findstds/standard/802.11-2016.html
  11. K-H. Chi, C-C. Tseng, Y-H. Tsai, "Fast Handoff among IEEE 802.11r Mobility Domains," Journal of Infromation Science and Engineering, Vol 26, No. 4, pp. 1345-1362, July 2010.
  12. H. Robers, Mobile Devices and Wi-Fi [Internet], Available: https://community.arubanetworks.com/aruba/attachments/aruba/WLAN-Pro-Conf-EU-2014/1/1/WLANPro_EU_MobileDevices%2520v1.0-airheads.pdf
  13. H. B. Lee, J. H. Park, "Implementation of an OpenFlow-based Access Point Virtual Switch for Monitoring and Virtualization of Legacy Wireless LAN," Journal of The Korea Society of Computer and Information, Vol. 21, No. 1, pp. 65-72, 2016 https://doi.org/10.9708/JKSCI.2016.21.1.065
  14. FreeRADIUS, FreeRADIUS Documentation, Available: https://freeradius.org/documentation
  15. ONOS, ONOS release, Available: https://downloads.onosproject.org/release
  16. J. H. Choi, S. W. Min, “Design and Implementation of a Novel Fast Handoff Algorithm for Streaming Service in Wireless LANs,” The Journal of Korea Information and Communication Society, Vol. 36, No. 1, pp. 1-7, January, 2011.
  17. M. L. Tetarwal, A. Kuntal, P. Karmakar, "A Review on Handoff Latency Reducing Techniques in IEEE 802.11 WLAN," Proceeding of National Seminar on Recent Advances in Wireless Networks and Communications( NWNC-2014), No. 2, pp. 22-28, 2014.
  18. P. Dely, A. Kassler, L. Chow, N. Bambos, N. Bayer, H. Einsiedler, et. al, "A software-defined networking approach for handover management with real-time video in WLANS," J. Mod. Transport, Vol. 21, No. 1, pp. 58-65, 2013. https://doi.org/10.1007/s40534-013-0007-x