DOI QR코드

DOI QR Code

Durability of Ultrarapid-Hardening Polymer-Modified Concretes Using Metakaolin

메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 내구특성

  • Received : 2018.04.27
  • Accepted : 2018.06.19
  • Published : 2018.09.01

Abstract

The effects of polymer-binder ratio and metakaolin content on the properties of ultrarapid-hardening polymer-modified concretes using metakaolin are examined. As a result, regardless of the metakaolin content, the flexural, compressive and adhesion in tension strength of the ultrarapid-hardening polymer-modified concretes tend to increase with increasing polymer-binder ratio. Regardless of the polymer-binder ratio, the strengths of the ultrarapid-hardening polymer-modified concretes increase with increasing metakaolin content, and reaches a maximum at metakaolin content of 5%. The water absorption, carbonation depth and resistance of chloride ion penetration of the ultrarapid-hardening polymer-modified concretes decrease with increasing polymer-binder ratio. The resistance of freezing and thawing improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of polymer dispersion.

이 본 연구에서는 메타카올린을 혼입한 초속경 폴리머 시멘트 콘크리트의 압축, 휨, 부착강도, 수밀성, 염화물 이온 침투 저항성,탄산화 깊이 및 동결융해 저항성에 미치는 폴리머-결합재비 및 메타카올린 첨가량의 영향에 대하여 검토하였다. 그 결과, 초속경 폴리머 시멘트 콘크리트의 휨, 압축 및 부착강도는 폴리머-결합재비의 증가에 따라 증가하는 경향을 보였다. 폴리머-결합재비에 관계없이, 초속경 폴리머 시멘트 콘크리트의 강도는 메타카올린 첨가량의 증가에 따라 증가하였으며, 메타카올린 첨가량 5%에서 최고 값을 나타내었다. 초속경 폴리머 시멘트 콘크리트의 흡수율, 탄산화 깊이 및 염화물이온 침투저항성은 폴리머-결합재비의 증가에 따라 감소하는 경향을 보였다. 초속경 폴리머 시멘트 콘크리트의 동결융해 저항성의 개선은 폴리머 에멀젼의 혼입에 의해 시멘트 수화물과 골재간의 접착성이 개선되기 때문이라 판단된다.

Keywords

References

  1. 전쌍순, 이효민, 진치섭, 황진연 (2004) 메타카올린 치환에 따른 알칼리-실리카 반응팽창 저감효과, 한국콘크리트학회 봄학술발표회 논문집, Vol. 16, No. 1, pp. 360-363
  2. Ssangyongcement (1998), Ssangyong Ultra Rapid Harding Cement I, Engineering Report
  3. Whiting, D., Nagi, M. and Okamoto, P. A. (1994), Early Strength Gain of Rapid High Repair Concrete, Concrete International, 16(8), 28-35.
  4. Ohama, Y. (1995), Handbook of Polymer-Modified Concrete and Mortars, Noyes Publications, 1995
  5. Su, Z. (1995), Microstructure of Polymer Cement Concrete, Ph.D. dissertation, Delft Univ. of Technology.
  6. Moon, D. J., Ju, J. E., Jo, J. H., Kang, H. J., Choi, Y. W. (2005), "Stength Properties of Mortar Containing Metakaolin", Journal of Korea Concrete Institute, 639-642.
  7. Khatib J. M., Wild S. (1996), Pore size distribution of metakaolin paste, Cement Concrete Res., 26(10), 1545-1553. https://doi.org/10.1016/0008-8846(96)00147-0
  8. Hwang, E. H., Ko, Y. S. (2008), Comparison of Mechanical and Physical Properties of SBR-Polymer Modified Mortars Using Recycled Waste Materials, Journal of Industrial and Engineering Chemistry, 14, 644-650. https://doi.org/10.1016/j.jiec.2008.02.009
  9. Kim, W. K. (2006), Strength and Adhesion Properties of Polymer-Modified Mortars Using Redispersible Powdwes and Polymer Dispersions, Journal of Architectural Institute of Korea, 22(4), 119-126.
  10. Kim, W., Ohama, Y., Demura, K. (1994), Drying Shringkage Reduction of Polymer-Modified Mortars Using Redispersible Polymer Powder by Use of Shringkage-Reducing Agents, Journal of Cement.Concrete, 48, 796-801.
  11. Lee, Y. S., Joo, M. K. (2003), Drying Shrinkage and Strength properties of Ultrarapid-hardening Polymer-Modified Mortar Using Redispersible Polymer Powder, Journal of Korea Concrete Institute, 15(3), 412-415.
  12. Kim, W. (1998), Drying Shringkage Reduction of Polymer-Modified Mortars Using Redispersible Polymer Powder by Use of Shringkage-Reducing Agents, Ph.D. dissertation, Nihon University.
  13. Choi, P. G. (2010), Early-Age Shrinkage and Air Void Structure of Very-Early Strength Latex-Modified Concrete Using Ultra-Fine Fly Ash, Ph.D. dissertation, Kangwon Univ.
  14. Jo, Y. K. (2009), A Study on the Water Permeability and Dry Shrinkage of Polymer Cement Composites", Journal of the Korea Institute of Building Construction, 9(5), 73-79 https://doi.org/10.5345/JKIC.2009.9.3.073
  15. Bae, S. C., Hyung, W. G. (2013), Properties of Polymer Modified Mortars Using Re-dispersible Polymer Powder, Journal of The Korea Institute of Building Construction, 13(3), 235-241. https://doi.org/10.5345/JKIBC.2013.13.3.235