DOI QR코드

DOI QR Code

Mass spectrometry based on nanomaterials

나노물질을 이용한 질량분석 기술 개발동향

  • Park, Jong-Min (Materials Science and Engineering, Yonsei University) ;
  • Noh, Joo-Yoon (Materials Science and Engineering, Yonsei University) ;
  • Kim, Moon-Ju (Materials Science and Engineering, Yonsei University) ;
  • Pyun, Jae-Chul (Materials Science and Engineering, Yonsei University)
  • 박종민 (연세대학교 신소재공학과) ;
  • 노주윤 (연세대학교 신소재공학과) ;
  • 김문주 (연세대학교 신소재공학과) ;
  • 변재철 (연세대학교 신소재공학과)
  • Received : 2018.08.29
  • Accepted : 2018.09.19
  • Published : 2018.09.30

Abstract

In conventional MALDI-TOF mass spectrometry, analyte molecules are known to be ionized by mixing with organic matrix molecules. As the organic matrix molecules are made into small fragments, they generate unreproducible mass peaks such that MALDI-TOF mass spectrometry is nearly impossible in the low mass-to-charge (m/z) range (< 1000). Additionally, the dried sample mixed with matrix were made as inhomogeneous crystal on metal plate. When the laser radiation was made on the sample crystal, the amount of generated sample ion was observed to be quite different according to the radiation point. Therefore, the quantitative analysis was very difficult even for the sample spots at the same concentration for the conventional MALDI-TOF mass spectrometry. In this work, we present laser desorption/ionization (LDI) mass spectrometry based on solid-matrices for the quantitative analysis of small molecules in the low m/z range by using MALDI-TOF mass spectrometry: (1) Carbon based nanostructures; (2) Semiconductor based nanomaterials; (3) Metal based nanostructures.

Keywords

References

  1. Siuzdak, G. Mass spectrometry for biotechnology. Elsevier (1996).
  2. Glish, G. L., & Vachet, R. W. The basics of mass spectrometry in the twenty-first century. Nat. Rev. Drug Discov., 2, 140 (2003). https://doi.org/10.1038/nrd1011
  3. Siuzdak, G. An introduction to mass spectrometry ionization: An excerpt from The Expanding Role of Mass Spectrometry in Biotechnology, J. Lab. Autom., 9, 50-63 (2004). https://doi.org/10.1016/j.jala.2004.01.004
  4. Schrauzer, G. N., & Guth, T. D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc., 99, 7189-7193 (1977). https://doi.org/10.1021/ja00464a015
  5. Linsebigler, A. L., Lu, G., & Yates Jr, J. T. Photocatalysis on $TiO_2$ surfaces: principles, mechanisms, and selected results. Chem. Rev., 95, 735-758 (1995). https://doi.org/10.1021/cr00035a013
  6. Wei, J., Buriak, J. M., & Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature, 399, 243 (1999). https://doi.org/10.1038/20400
  7. Kang, M. J., Pyun, J. C., Lee, J. C., Choi, Y. J., Park, J. H., Park, J. G., & Choi, H. J. Nanowireassisted laser desorption and ionization mass spectrometry for quantitative analysis of small molecules. Rapid Commun. Mass spectrom., 19, 3166-3170 (2005). https://doi.org/10.1002/rcm.2187
  8. Kim, J. I., Park, J. M., Kang, M. J., & Pyun, J. C. Parylene-matrix chip for small molecule analysis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass spectrom., 28, 274-280 (2014). https://doi.org/10.1002/rcm.6782
  9. Park, J. M., Kim, J. I., Song, H. W., Noh, J. Y., Kang, M. J., & Pyun, J. C. Highly sensitive bacterial susceptibility test against penicillin using parylenematrix chip. Biosens. Bioelectron., 71, 306-312 (2015). https://doi.org/10.1016/j.bios.2015.04.059
  10. Park, J. M., Kim, J. I., Noh, J. Y., Kim, M., Kang, M. J., & Pyun, J. C. Hypersensitive antibiotic susceptibility test based on a ${\beta}$-lactamase assay with a parylene-matrix chip. Enzyme Microb. Technol., 97, 90-96 (2017). https://doi.org/10.1016/j.enzmictec.2016.11.008
  11. Kim, J. I., Park, J. M., Noh, J. Y., Kang, M. J., & Pyun, J. C. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of small volatile molecules using a parylene-matrix chip. Rapid Commun. Mass spectrom., 28, 2301-2306 (2014). https://doi.org/10.1002/rcm.7025
  12. Kim, J. I., Ryu, S. Y., Park, J. M., Noh, J. Y., Kang, M. J., Kwak, S. Y., & Pyun, J. C. Nylon nanoweb with $TiO_2$ nanoparticles as a solid matrix for matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass spectrom., 28, 2427-2436 (2014). https://doi.org/10.1002/rcm.7036
  13. Kim, J. I., Park, J. M., Hwang, S. J., Kang, M. J., & Pyun, J. C. Top-down synthesized $TiO_2$ nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry. Anal. Chim. Acta, 836, 53-60 (2014). https://doi.org/10.1016/j.aca.2014.05.041
  14. Kim, J. I., Park, J. M., Noh, J. Y., Hwang, S. J., Kang, M. J., & Pyun, J. C. Analysis of benzylpenicillin in milk using MALDI-TOF mass spectrometry with top-down synthesized $TiO_2$ nanowires as the solid matrix. Chemosphere, 143, 64-70 (2016). https://doi.org/10.1016/j.chemosphere.2015.04.002
  15. Park, J. M., Jung, H. W., Chang, Y. W., Kim, H. S., Kang, M. J., & Pyun, J. C. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity. Anal. Chim. Acta, 853, 360-367 (2015). https://doi.org/10.1016/j.aca.2014.10.011
  16. Wang, J., Liu, Q., Liang, Y., & Jiang, G. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem., 408, 2861-2873 (2016). https://doi.org/10.1007/s00216-015-9255-4
  17. Kong, X., & Huang, Y. Applications of graphene in mass spectrometry. J. Nanosci. Nanotechnol, 14, 4719-4732 (2014). https://doi.org/10.1166/jnn.2014.9503
  18. Dong, X., Cheng, J., Li, J., & Wang, Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem., 82, 6208-6214 (2010). https://doi.org/10.1021/ac101022m
  19. Lu, M., Lai, Y., Chen, G., & Cai, Z. Matrix interference-free method for the analysis of small molecules by using negative ion laser desorption/ionization on graphene flakes. Anal. Chem., 83, 3161-3169 (2011). https://doi.org/10.1021/ac2002559
  20. Lu, M., Lai, Y., Chen, G., & Cai, Z. Laser desorption/ionization on the layer of graphene nanoparticles coupled with mass spectrometry for characterization of polymers. Chem. Comm., 47, 12807-12809 (2011). https://doi.org/10.1039/c1cc15592j
  21. Tang, L. A. L., Wang, J., & Loh, K. P. Graphenebased SELDI probe with ultrahigh extraction and sensitivity for DNA oligomer. J. Am. Chem. Soc., 132, 10976-10977 (2010). https://doi.org/10.1021/ja104017y
  22. Liu, Y., Liu, J., Yin, P., Gao, M., Deng, C., & Zhang, X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J. Mass spectrom., 46, 804-815 (2011). https://doi.org/10.1002/jms.1952
  23. Liu, Y., Liu, J., Deng, C., & Zhang, X. Graphene and graphene oxide: two ideal choices for the enrichment and ionization of long-chain fatty acids free from matrix-assisted laser desorption/ionization matrix interference. Rapid Commun. Mass spectrom., 25, 3223-3234 (2011). https://doi.org/10.1002/rcm.5218
  24. Zhou, X., Wei, Y., He, Q., Boey, F., Zhang, Q., & Zhang, H. Reduced graphene oxide films used as matrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem. Comm., 46, 6974-6976 (2010). https://doi.org/10.1039/c0cc01681k
  25. Sunner, J., Dratz, E., & Chen, Y. C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem., 67, 4335-4342 (1995). https://doi.org/10.1021/ac00119a021
  26. Chen, Y. C., & Wu, J. Y. Analysis of small organics on planar silica surfaces using surface-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass spectrom., 15, 1899-1903 (2001). https://doi.org/10.1002/rcm.451
  27. Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., & Guo, B. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 75, 6191-6195 (2003). https://doi.org/10.1021/ac0345695
  28. Lee, J., Kim, Y. K., & Min, D. H. Laser desorption/ionization mass spectrometric assay for phospholipase activity based on graphene oxide/carbon nanotube double-layer films. J. Am. Chem. Soc., 132, 14714-14717 (2010). https://doi.org/10.1021/ja106276j
  29. Gholipour, Y., Giudicessi, S. L., Nonami, H., & Erra-Balsells, R. Diamond, titanium dioxide, titanium silicon oxide, and barium strontium titanium oxide nanoparticles as matrixes for direct matrix-assisted laser desorption/ionization mass spectrometry analysis of carbohydrates in plant tissues. Anal. Chem., 82, 5518-5526 (2010). https://doi.org/10.1021/ac1003129
  30. Najam-ul-Haq, M., Rainer, M., Huck, C. W., Hausberger, P., Kraushaar, H., & Bonn, G. K. Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal. Chem., 80, 7467-7472 (2008). https://doi.org/10.1021/ac801190e
  31. Mills, A., & Le Hunte, S. An overview of semiconductor photocatalysis. J. Photochem. Photobiol., A: Chemistry, 108, 1-35 (1997). https://doi.org/10.1016/S1010-6030(97)00118-4
  32. Kruse, R. A., Rubakhin, S. S., Romanova, E. V., Bohn, P. W., & Sweedler, J. V. Direct assay of Aplysia tissues and cells with laser desorption/ionization mass spectrometry on porous silicon. J. Mass spectrom., 36, 1317-1322 (2001). https://doi.org/10.1002/jms.237
  33. Muck, A., Stelzner, T., Hubner, U., Christiansen, S., & Svatos, A. Lithographically patterned silicon nanowire arrays for matrix free LDI-TOF/MS analysis of lipids. Lab on a Chip, 10, 320-325 (2010). https://doi.org/10.1039/B913212K
  34. Chen, C. T., & Chen, Y. C. Desorption/ionization mass spectrometry on nanocrystalline titania sol-gel-deposited films. Rapid Commun. Mass spectrom., 18, 1956-1964 (2004). https://doi.org/10.1002/rcm.1572
  35. Lee, K. H., Chiang, C. K., Lin, Z. H., & Chang, H. T. Determining enediol compounds in tea using surface-assisted laser desorption/ionization mass spectrometry with titanium dioxide nanoparticle matrices. Rapid Commun. Mass spectrom., 21, 2023-2030 (2007). https://doi.org/10.1002/rcm.3058
  36. Watanabe, T., Kawasaki, H., Yonezawa, T., & Arakawa, R. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J. Mass spectrom., 43, 1063-1071 (2008). https://doi.org/10.1002/jms.1385
  37. Grechnikov, A. A., Georgieva, V. B., Alimpiev, S. S., Borodkov, A. S., Nikiforov, S. M., Simanovsky, Y. O., & Angelov, O. I. Investigation of thin ZnO layers in view of laser desorption-ionization. In J. Phys., 223, 12038 (2010).
  38. Kailasa, S. K., Kiran, K., & Wu, H.-F. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 80, 9681-9688 (2008). https://doi.org/10.1021/ac8015664
  39. Kailasa, S. K., & Wu, H.-F. Interference free detection for small molecules: Probing the $Mn^{2+}$-doped effect and cysteine capped effect on the ZnS nanoparticles for coccidiostats and peptide analysis in SALDI-TOF MS. Analyst, 135, 1115-1123 (2010). https://doi.org/10.1039/b919359f
  40. Ke, Y., Kailasa, S. K., Wu, H.-F., & Chen, Z.-Y. High resolution detection of high mass proteins up to 80,000 Da via multifunctional CdS quantum dots in laser desorption/ionization mass spectrometry. Talanta, 83, 178-184 (2010). https://doi.org/10.1016/j.talanta.2010.09.003
  41. Shrivas, K., Kailasa, S. K., & Wu, H. F. Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI-TOF MS. Proteomics, 9, 2656-2667 (2009). https://doi.org/10.1002/pmic.200800772
  42. Sato, H., Nemoto, A., Yamamoto, A., & Tao, H. Surface cleaning of germanium nanodot ionization substrate for surface-assisted laser desorption/ ionization mass spectrometry. Rapid Commun. Mass spectrom., 23, 603-610 (2009). https://doi.org/10.1002/rcm.3916
  43. Brongersma, M. L., Halas, N. J., & Nordlander, P. Plasmon-induced hot carrier science and technology, Nat. Nanotechnol., 10, 25-34 (2015). https://doi.org/10.1038/nnano.2014.311
  44. Hinman, S. S., Chen, C. Y., Duanb, J., & Cheng, Q. Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules, Nanoscale, 8, 1655-1675 (2016).
  45. Misawa, M., & Takahashi, J. Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations, Nanomedicine: NBM, 7, 604-614 (2011). https://doi.org/10.1016/j.nano.2011.01.014
  46. Kawasaki, H., Sugitani, T., Watanabe, T., Yonezawa, T., Moriwaki, H., & Arakawa, R. Layer-by-Layer Self-Assembled Multilayer Films of Gold Nanoparticles for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Chem., 80, 7524-7533 (2008). https://doi.org/10.1021/ac800789t
  47. Nayak, R., & Knapp, D. R. Matrix-Free LDI Mass Spectrometry Platform using Patterned Nanostructured Gold Thin Film, Anal. Chem., 82, 7772-7778 (2010). https://doi.org/10.1021/ac1017277
  48. Castellana, E. T., Gamez, R. C., Gomez, M. E., & Russel, D. H. Longitudinal Surface Plasmon Resonance Based Gold Nanorod Biosensors for Mass Spectrometry, Langmuir, 26, 6066-6070 (2010). https://doi.org/10.1021/la904467b
  49. Yonezawa, T., Kawasaki, H., Tarui, A., Watanabe, T., Arakawa, R., Shimada, T., & Mafune, F. Detailed Investigation on the Possibility of Nanoparticles of Various Metal Elements for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Anal. Sci., 25, 339-346 (2009). https://doi.org/10.2116/analsci.25.339
  50. Su, C. L., & Tseng, W. L. Gold Nanoparticles as Assisted Matrix for Determining Neutral Small Carbohydrates through Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Anal. Chem., 79, 1626-1633 (2007). https://doi.org/10.1021/ac061747w
  51. Spencer, M. T., Furutani, H., Oldenburg, S. J., Darlington, T. K., & Prather, K. A. Gold Nanoparticles as a Matrix for Visible-Wavelength Single-Particle Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Small Biomolecules, J. Phys. Chem. C, 112, 4083-4090 (2008). https://doi.org/10.1021/jp076688k
  52. Kawasaki, H., Yonezawa, T., Watanabe, T., & Arakawa, R. Platinum Nanoflowers for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry of Biomolecules, J. Phys. Chem. C, 111, 16278-16283 (2007). https://doi.org/10.1021/jp075159d
  53. Shrivas, K., Agrawal, K., & Wu, H. F. Application of Platinum Nanoparticles as Affinity Probe and Matrix for Direct Analysis of Small Biomolecules and Microwave Digested Proteins using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry, Analyst, 136, 2852-2857 (2011). https://doi.org/10.1039/c1an15211d
  54. Sherrod, S. D., Diaz, A. J., Russell, W. K., Cremer, P. S., & Russell, D. H. Silver Nanoparticles as Selective Ionization Probes for Analysis of Olefins by Mass Spectrometry, Anal. Chem., 80, 6796-6799 (2008). https://doi.org/10.1021/ac800904g
  55. Chiu, T. C., Chang, L. C., Chiang, C. K., & Chang, H. T. Determining Estrogens Using Surface-Assisted Laser Desorption/Ionization Mass Spectrometry with Silver Nanoparticles as the Matrix, J. Am. Soc. Mass Spectrom., 19, 1343-1346 (2008). https://doi.org/10.1016/j.jasms.2008.06.006
  56. Hayasaka, T., Goto-Inoue, N., Zaima, N., Shrivas, K., Kashiwagi, Y., Yamamoto, M., Nakamoto, M., & Setou, M. Imaging Mass Spectrometry with Silver Nanoparticles Reveals the Distribution of Fatty Acids in Mouse Retinal Sections, J. Am. Soc. Mass Spectrom., 21, 1446-1454 (2010). https://doi.org/10.1016/j.jasms.2010.04.005
  57. Yalcin, T., & Li, L. Cobalt Coated Substrate for Matrix-Free Analysis of Small Molecules by Laser Desorption/Ionization Mass Spectrometry, Appl. Surf. Sci., 256, 1309-1312 (2009). https://doi.org/10.1016/j.apsusc.2009.10.030