DOI QR코드

DOI QR Code

Recent Advances in a Microfluidic Paper-based Analytical Devices and its Point of Care Testing Applications

종이기반 미세유체 분석소자를 활용한 현장검사 기술과 그 응용

  • Yoo, Yong Kyoung (Department of Electrical Engineering, Kwangwoon University) ;
  • Kim, Cheonjung (Department of Electrical Engineering, Kwangwoon University) ;
  • Lee, Junwoo (Department of Electrical Engineering, Kwangwoon University) ;
  • Lee, Jeong Hoon (Department of Electrical Engineering, Kwangwoon University)
  • Received : 2018.09.04
  • Accepted : 2018.09.14
  • Published : 2018.09.30

Abstract

Paper-based analytical devices (${\mu}PAD$) are highly advantageous for portable diagnostic systems owing to their low costs and ease of use. ${\mu}PADs$ are considered as the best candidates for realizing the World Health Organization (WHO) ASSURED criteria: affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end users. However, they have several limitations such as low sensitivity and accuracy. This article reports a mini review for a micro-fluidic paper-based analytical devices (${\mu}PAD$), especially for addressing low sensitivity and accuracy issues.

Keywords

References

  1. F. Bedin, L. Boulet, E. Voilin, G. Theillet, A. Rubens & C. Rozand, "Paper-based point-of-care testing for cost-effective diagnosis of acute flavivirus infections", Journal of Medical Virology, 89 [9] 1520-27 (2017). https://doi.org/10.1002/jmv.24806
  2. P. B. Luppa, C. Müller, A. Schlichtiger & H. Schlebusch, "Point-of-care testing (POCT): Current techniques and future perspectives", TrAC Trends in Analytical Chemistry, 30 [6] 887-98 (2011). https://doi.org/10.1016/j.trac.2011.01.019
  3. P. Lisowski & P. K. Zarzycki, "Microfluidic Paper-Based Analytical Devices (${\mu}$PADs) and Micro Total Analysis Systems (${\mu}$TAS): Development, Applications and Future Trends", Chromatographia, 76 [19] 1201-14 (2013). https://doi.org/10.1007/s10337-013-2413-y
  4. A. W. Martinez, S. T. Phillips, G. M. Whitesides & E. Carrilho, "Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices", Analytical Chemistry, 82 [1] 3-10 (2010). https://doi.org/10.1021/ac9013989
  5. B. J. Toley, J. A. Wang, M. Gupta, J. R. Buser, L. K. Lafleur, B. R. Lutz, E. Fu & P. Yager, "A versatile valving toolkit for automating fluidic operations in paper microfluidic devices", Lab on a chip, 15 [6] 1432-44 (2015). https://doi.org/10.1039/C4LC01155D
  6. S. I. Han, K. S. Hwang, R. Kwak & J. H. Lee, "Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization", Lab on a Chip, 16 [12] 2219-27 (2016). https://doi.org/10.1039/C6LC00499G
  7. S. I. Han, Y. K. Yoo, J. Lee, C. Kim, K. Lee, T. H. Lee, H. Kim, D. S. Yoon, K. S. Hwang, R. Kwak & J. H. Lee, "High-ionic-strength pre-concentration via ion concentration polarization for blood-based biofluids", Sensors and Actuators B: Chemical, 268 485-93 (2018). https://doi.org/10.1016/j.snb.2018.04.144
  8. E. Carrilho, A. W. Martinez & G. M. Whitesides, "Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics", Analytical Chemistry, 81 [16] 7091-95 (2009). https://doi.org/10.1021/ac901071p
  9. T. Songjaroen, W. Dungchai, O. Chailapakul & W. Laiwattanapaisal, "Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping", Talanta, 85 [5] 2587-93 (2011). https://doi.org/10.1016/j.talanta.2011.08.024
  10. S. I. Han, K. S. Hwang, R. Kwak & J. H. Lee, "Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization", Lab Chip, 16 [12] 2219-27 (2016). https://doi.org/10.1039/C6LC00499G
  11. Z. Nie, F. Deiss, X. Liu, O. Akbulut & G. M. Whitesides, "Integration of paper-based microfluidic devices with commercial electrochemical readers", Lab Chip, 10 [22] 3163-9 (2010). https://doi.org/10.1039/c0lc00237b
  12. K. Abe, K. Suzuki & D. Citterio, "Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper", Analytical Chemistry, 80 [18] 6928-34 (2008). https://doi.org/10.1021/ac800604v
  13. T. Nurak, N. Praphairaksit & O. Chailapakul, "Fabrication of paper-based devices by lacquer spraying method for the determination of nickel (II) ion in waste water", Talanta, 114 291-96 (2013). https://doi.org/10.1016/j.talanta.2013.05.037
  14. Q. He, C. Ma, X. Hu & H. Chen, "Method for Fabrication of Paper-Based Microfluidic Devices by Alkylsilane Self-Assembling and UV/O3-Patterning", Analytical Chemistry, 85 [3] 1327-31 (2013). https://doi.org/10.1021/ac303138x
  15. T. Songjaroen, W. Dungchai, O. Chailapakul, C. S. Henry & W. Laiwattanapaisal, "Blood separation on microfluidic paper-based analytical devices", Lab on a Chip, 12 [18] 3392-98 (2012). https://doi.org/10.1039/c2lc21299d
  16. X. Yang, O. Forouzan, T. P. Brown & S. S. Shevkoplyas, "Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices", Lab on a Chip, 12 [2] 274-80 (2012). https://doi.org/10.1039/C1LC20803A
  17. K. Kaarj, P. Akarapipad & J.-Y. Yoon, "Simpler, Faster, and Sensitive Zika Virus Assay Using Smartphone Detection of Loop-mediated Isothermal Amplification on Paper Microfluidic Chips", Scientific Reports, 8 [1] 12438 (2018). https://doi.org/10.1038/s41598-018-30797-9
  18. M. M. Gong, R. Nosrati, M. C. San Gabriel, A. Zini & D. Sinton, "Direct DNA Analysis with Paper-Based Ion Concentration Polarization", Journal of the American Chemical Society, 137 [43] 13913-19 (2015). https://doi.org/10.1021/jacs.5b08523
  19. L. Luo, X. Li & R. M. Crooks, "Low-Voltage Origami-Paper-Based Electrophoretic Device for Rapid Protein Separation", Analytical Chemistry, 86 [24] 12390-97 (2014). https://doi.org/10.1021/ac503976c
  20. E. A. Phillips, R. Shen, S. Zhao & J. C. Linnes, "Thermally actuated wax valves for paper-fluidic diagnostics", Lab on a Chip, 16 [21] 4230-36 (2016). https://doi.org/10.1039/C6LC00945J
  21. C. Chen, B.-R. Lin, M.-Y. Hsu & C.-M. Cheng, "Paper-based Devices for Isolation and Characterization of Extracellular Vesicles", Journal of Visualized Experiments : JoVE, [98] 52722 (2015).
  22. C.-M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica & G. M. Whitesides, "Paper-Based ELISA", Angewandte Chemie International Edition, 49 [28] 4771-74 (2010). https://doi.org/10.1002/anie.201001005
  23. C.-K. Hsu, H.-Y. Huang, W.-R. Chen, W. Nishie, H. Ujiie, K. Natsuga, S.-T. Fan, H.-K. Wang, J. Y.-Y. Lee, W.-L. Tsai, H. Shimizu & C.-M. Cheng, "Paper-Based ELISA for the Detection of Autoimmune Antibodies in Body Fluid-The Case of Bullous Pemphigoid", Analytical Chemistry, 86 [9] 4605-10 (2014). https://doi.org/10.1021/ac500835k
  24. C.-M. Shih, C.-L. Chang, M.-Y. Hsu, J.-Y. Lin, C.-M. Kuan, H.-K. Wang, C.-T. Huang, M.-C. Chung, K.-C. Huang, C.-E. Hsu, C.-Y. Wang, Y.-C. Shen & C.-M. Cheng, "Paper-based ELISA to rapidly detect Escherichia coli", Talanta, 145 2-5 (2015). https://doi.org/10.1016/j.talanta.2015.07.051
  25. J. C. Jokerst, J. A. Adkins, B. Bisha, M. M. Mentele, L. D. Goodridge & C. S. Henry, "Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens", Analytical Chemistry, 84 [6] 2900-07 (2012). https://doi.org/10.1021/ac203466y
  26. S. Rengaraj, Á. Cruz-Izquierdo, J. L. Scott & M. Di Lorenzo, "Impedimetric paper-based biosensor for the detection of bacterial contamination in water", Sensors and Actuators B: Chemical, 265 50-58 (2018). https://doi.org/10.1016/j.snb.2018.03.020
  27. D. M. Cate, S. D. Noblitt, J. Volckens & C. S. Henry, "Multiplexed paper analytical device for quantification of metals using distance-based detection", Lab on a Chip, 15 [13] 2808-18 (2015). https://doi.org/10.1039/C5LC00364D
  28. S. M. Z. Hossain & J. D. Brennan, "${\beta}$-Galactosidase-Based Colorimetric Paper Sensor for Determination of Heavy Metals", Analytical Chemistry, 83 [22] 8772-78 (2011). https://doi.org/10.1021/ac202290d
  29. F. Guder, A. Ainla, J. Redston, B. Mosadegh, A. Glavan, T. J. Martin & G. M. Whitesides, "Paper-Based Electrical Respiration Sensor", Angewandte Chemie International Edition, 55 [19] 5727-32 (2016). https://doi.org/10.1002/anie.201511805
  30. S. Kanaparthi & S. Badhulika, "Low cost, flexible and biodegradable touch sensor fabricated by solventfree processing of graphite on cellulose paper", Sensors and Actuators B: Chemical, 242 857-64 (2017). https://doi.org/10.1016/j.snb.2016.09.172
  31. Q. Zhong, J. Zhong, B. Hu, Q. Hu, J. Zhou & Z. L. Wang, "A paper-based nanogenerator as a power source and active sensor", Energy & Environmental Science, 6 [6] 1779-84 (2013). https://doi.org/10.1039/c3ee40592c
  32. G. Nystrom, A. Razaq, M. Stromme, L. Nyholm & A. Mihranyan, "Ultrafast All-Polymer Paper-Based Batteries", Nano Letters, 9 [10] 3635-39 (2009). https://doi.org/10.1021/nl901852h
  33. Y. Lu, W. Shi, J. Qin & B. Lin, "Fabrication and Characterization of Paper-Based Microfluidics Prepared in Nitrocellulose Membrane By Wax Printing", Analytical Chemistry, 82 [1] 329-35 (2010). https://doi.org/10.1021/ac9020193
  34. S. B. Berry, S. C. Fernandes, A. Rajaratnam, N. S. DeChiara & C. R. Mace, "Measurement of the hematocrit using paper-based microfluidic devices", Lab on a Chip, 16 [19] 3689-94 (2016). https://doi.org/10.1039/C6LC00895J