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In this study, we developed hybrid control
algorithms in smart base stations (SBSs) along with
devised communication, caching, and computing
techniques. In the proposed scheme, SBSs are
equipped with computing power and data storage to
collectively offload the computation from mobile user
equipment and to cache the data from clouds. To
combine in a refined manner the communication,
caching, and computing algorithms, game theory is
adopted to characterize competitive and cooperative
interactions. The main contribution of our proposed
scheme is to illuminate the ultimate synergy behind a
fully integrated approach, while providing excellent
adaptability and flexibility to satisfy the different
performance requirements. Simulation results
demonstrate that the proposed approach can
outperform existing schemes by approximately 5% to
15% in terms of bandwidth utilization, access delay,
and system throughput.
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I. Introduction

As the next-generation of mobile networks, 5G
networks are intended to increase the network’s capacity
to support the immense amount of global mobile traffic
services. Along with recent advances in mobile
communication technologies, 5G networks are expected to
be well suited to addressing the increasing number of
wireless devices as well as the need for omnipresent
network access. Among the main characteristics of the 5G
network, its data rates are tens of megabits per second for
tens of thousands of users; it provides several hundreds of
thousands of simultaneous wireless connections; it offers
enhanced spectral and signaling efficiency; it improves
coverage; and it reduces latency [1]. However, the
capacities of wireless links, front-haul radio access
networks, and back-haul core networks are unable to
match the extraordinarily rapid growth of traffic services
owing to the limitations of traditional cellular network
architectures [2]. In 4G network architecture, the main
concern is to efficiently deploy the network resource for
the system performance maximization. This classic
approach cannot adaptively meet end-user demands that
are repeatedly presented by multiple users because each
request should be processed with different quality of
service (QoS) requirements [2], [3].
With the development of mobile user equipment (UE),

new types of computation-intensive and delay-sensitive
mobile applications are drawing increasing attention, such
as augmented reality and recognition assistance [4].
However, UE is usually resource-constrained; it has a
limited computation capacity. As a result, it is difficult
to smoothly implement these computation-intensive
applications at the UE. To solve this problem, cloud
computing can be used to expand mobile device resources.
Cloud computing may be viewed as a decentralized proxy
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cloud server that offers cloud services to mobile UE while
enriching a limited available infrastructure. Fueled by this
cloud-based offloading technique, the communicating and
computing functionalities are beginning to converge in the
so-called 5G ecosystem, thereby evoking the notion of
“computing for communications” [5], [6].
The inter-communications between applications running

UE and remote cloud servers act as bridges in the
cooperation of UE devices and their corresponding clouds.
In this inter-communication mechanism, computation
execution and data access are always tightly coupled.
Usually, applications running UE access their required data
from the cloud server. In this process, a transmission delay
will inevitably occur To reduce the delay latency, data
caching technology was introduced Data caching can
greatly reduce the number of duplicate data transmissions
while preventing the front-haul capacity bottleneck [7], [8].
With the data caching technique for computation services,
content caching for communication services is considered
for popular distribution. By caching the popular content,
UE effectively obtains its requested content instead of
straining the front-haul connections [5], [9].
To effectively support 5G network communication,

caching, and computing services, smart base stations
(SBSs) have been widely viewed as a key infrastructure.
In SBSs, computation offloading processing, data caching
and mobile communication technologies are collectively
employed. Therefore, the computation can be offloaded to
the SBS, and data and contents can be cached at the SBS
to effectively decrease the delays generated during the
inter-communication process between the UE and its
cloud server [7]. To maximize the 5G network
performance, all relevant control factors must be
comprehensively considered to leverage the full synergy
of the converged communication, caching, and computing
operations in SBSs [5].
To design a novel 5G network SBS control scheme, a

new control paradigm is needed. The interaction between
the rational agents—who have conflicting objectives—is
often characterized using game theory. Game theory is the
study of strategic interactions between multiple intelligent
rational decision makers, who consistently pursue their
own objectives in striving to maximize the expected value
of their own payoffs.
Game theory has been successfully applied to wireless

communications for solving competition problems of
network resources [10]. Being the control theory of
multiple goal-driven agents, game theory provides many
effective solutions for dealing with 5G network situations
and questions. Motivated by the above background, we
adopted a theoretical gaming approach to develop

practical SBS control algorithms. Accordingly, we can
ease the heavy computational burden of theoretically
optimal centralized solutions [10].
In this study, we designed a two-tier hierarchical game to

model the interaction among SBSs and UE. At the first-tier,
SBSs are game players, and the total bandwidth is
distributed to each SBS based on a dynamic bargaining
model. At the second-tier, each individual SBS and its
corresponding UE are game players; their interactions are
modeled as a Stackelberg game model. As a leader, the
SBS splits its cache capacity for data and content caching,
as well as decides the price for communication and
computation services. As followers, UE devices monitor
their leader’s decision and select their best strategies. Using
the proposed two-tier game approach, we can capture
various mobile communication, caching, and computing
characteristics, and a balanced solution can be obtained
under diversified 5G network situations.
In addition, we address the challenges of effective

computation offloading, cache splitting and bandwidth
allocation for communications. These algorithms are
combined in an integrated SBS control scheme that can
harness the synergies between SBS computations and
communications with caching capabilities. The basic
concept of our integrated scheme is to design a two-tier
game-model-based interactive mechanism. As game
players, SBSs and UE make control decisions according
to the step-by-step timed learning approach. Under
dynamically changing 5G network environments, our
game model achieves greater and reciprocal advantages
for all players, who can strengthen their competitive
advantages by cooperation. Therefore, the main
contributions of this paper are to ensure adaptability and
flexibility to handle the wide range of 5G network control
issues, and to obtain the finest solution to effectively adapt
to current system conditions.
Based on the game-based-learning approach, our

proposed scheme mainly considers three operational
decision issues: i) the decision of computation offloading
in each individual UE, ii) the decision of splitting radio for
data and content caching capacities, and iii) the decision
of bandwidth allocation for each SBS to ensure mobile
communications. To effectively address these issues, we
focus on design principles, such as feasibility, self-
interactivity, and the holistic combination of different
control algorithms, which are mutually dependent, to
resolve conflicting performance criteria under multiple
highly diversified 5G network situations. Although several
5G communication, caching, and computing algorithms
have been proposed, no systematic study based on the
unified and combined approach has been conducted. To
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the best of our knowledge, the present study is the first to
design a game-based 5G network control scheme by
integrating offloading, caching and bandwidth allocation
algorithms.

1. Related Work

Considerable research has been conducted on the design
of communication, caching, and computing algorithms
for 5G networks. Reference [15] presents a system
architecture and potential caching scheme for 5G networks
that can optimize the average latency and energy cost in
content transmission. Unlike the traditional caching
schemes, the caching strategy in [15] is designed to
exploit the advantage of multicasting and cooperating.
Reference [16] presents a comprehensive survey of the

state-of-the-art mobile edge computing (MEC) research
with a focus on joint radio and computational resource
management. In addition, that study summarizes the
modeling methodologies on key components of MEC
systems, such as the computation tasks and
communications, as well as the computation of mobile
devices and MEC servers [18]. Reference [18] introduces
a unified computing, caching, and communication solution
for the upcoming 5G network environment that enables
service, content, and function providers to deploy their
services/content/functions near the end users, and to allow
network providers to virtually deploy their connectivity
services over commodity hardware. In addition, a
designed architecture is presented that is intended to
reshape the network landscape to fulfill forthcoming 5G
requirements [18].
In [19], a collaborative cache allocation and computation

offloading scheme is proposed, whereby the MEC servers
collaborate for executing computation tasks and data
caching. In their proposal, caching and computational
resources are allocated to many service requesters based on
their demands and payments. The mobile network operator
allocates resources based on weighted proportional
allocation [19]. In [7], Fan and others propose a joint
computation offloading and caching (JCOC) scheme. In
the scheme, base stations are equipped with computing
power and data storage to jointly offload the computation
from terminals and cache the data from clouds. In this
scheme, joint computation offloading and data caching
capabilities are utilized by base stations to reduce the delay
experienced in the process of cloud computations and
communications. Using a genetic algorithm, those authors
developed a resource management algorithm, which jointly
schedules computation offloading and allocates data
caching for computation or data requests sent by UE.

Finally, the efficiency of the JCOC scheme is shown and
its superior performance is demonstrated via the
comparisons among different schemes [7].
Reference [20] presents a collaborative computation

offloading and caching (CCOC) scheme to improve the
performance of cloud intercommunications. Based on the
queuing theory, the CCOC scheme formulates the total
delays, which consist of transmission and computation
delays in the cloud intercommunications of all UE under
the base station coverage. To minimize the total delays,
data allocation, offload scheduling and resource
management algorithms are presented to jointly schedule
computation offloading from UE to base stations while
allocating data caching from clouds to base stations. To
reduce the iterations, which are needed by the offloading
scheduling algorithm, constraint relaxation and revision
technologies are also proposed [20].
Hajimirsadeghi and others proposed a joint caching and

pricing control (JCPC) scheme for information-centric
networks [21]. To determine caching and pricing
strategies, a theoretical game approach is presented to
study Nash strategies for a non-cooperative game using a
probabilistic model. To this end, it is assumed that access
requests generally follow the generalized Zipf distribution.
The authors show that the Nash equilibrium is unique and
that the caching policy is determined by a content
popularity threshold. In addition, they provide a monetary
incentive model to collaborate in caching and distributing
content. In this model, the caching costs vary with respect
to content popularity, while the content provider cost per
unit data is fixed for all content types. When content with
different popularities are available in the network, this
price-based control approach is an effective solution [21].
Some earlier studies [5], [7], [20], [21] have attracted

considerable attention while introducing unique
challenges in handling the 5G computation, caching, and
communication control problems. In the present paper, we
demonstrate that our proposed scheme significantly
outperforms these existing JCOC [7], CCOC [20], and
JCPC [21] schemes.

II. Proposed 5G Network Integrated Control
Scheme

1. Two-Tier Hierarchical Game Model

During the 5G network operation, SBSs and UE make
control decisions individually while considering their
mutual relationship. In this paper, we consider a scenario
formed by n SBSs B ¼ fB1 � � � Bng and m UE
E ¼ fE1 � � � Emg. Each SBS Bi 2 B is connected to the
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Internet via a limited front-haul link with capacity CBi ,
whereas each UE Ej 2 E is connected to its serving SBS
via a wireless link. The caching at each SBS is an
important means of offloading the traffic and tackling the
front-haul bottleneck to reduce the latency and cost of
services.
There are two kinds of caching for 5G network services:

data caching for computation offloading and content
caching for mobile communications. Therefore, the
capacity of Bi’s cache storage QBi is divided. With the
computation offloading and caching services, wireless
bandwidth is assigned to each SBS to support the
communications between the UE and its corresponding
SBS. Usually, the bandwidth needs for each SBS would
vary temporally and spatially. To dynamically adapt the
traffic fluctuations, our principle of allocating bandwidth
to SBSs is a fair and efficient bargaining approach based
on self-monitoring.
To combine computation offloading, caching, and

bandwidth allocation algorithms, we present a two-tier
hierarchical game model ðGÞ assuming dynamic 5G
network situations. Formally, we define G ¼ fGfirst;

Gsecond
1�i�ng, where Gfirst is the first-tier bargaining game to

formulate interactions among SBSs, and Gsecond
1�i�n comprises

multiple second-tier games to formulate interactions
between the B1�i�n and its corresponding UE. They work
in parallel and independently. Firstly, the Gfirst can be
defined as Gfirst ¼ fB;CB; hSB1 � � �SBni; UBi2B; Tg at
each time period t of game play.

• B ¼ fB1 � � � Bng represents a set of SBSs; they are the
first-tier game players.

• The bandwidth capacity of the 5G network system is C;
it is divided into SBSs.

• hSB1 � � �SBni is a strategy vector, which corresponds to
the assigned bandwidth amount for each SBS, where
SBi is the allocation strategy set of Bi.

• UBi is the payoff received by Bi during the bandwidth
allocation operation.

• T ¼ fH1; . . .;Ht;Htþ1; . . .g denotes time, which is
represented by a sequence of time steps with imperfect
information for the Gfirst game process.
Secondly, Gsecond

i is the ith second-tier game, and it can
be defined as

Gsecond
i ¼ fBi 2 B; EBig; fSP

Bi
;SQ

Bi
g;SE j

Bi2EBi

� �
;

�

UBi ;UBi

EjBi2EBi

� �
; T

�
;

at each time period t of gameplay. There are a total of
n second-tier games ðGsecond

1�i�nÞ in our two-tier game
structure.

• EBi ¼ fE1
Bi
� � � Er

Bi
g is the set of UE devices that are in

the Bi coverage area. Bi and EBi are game players for the
second-tier Gsecond

i game, which is formulated as a
Stackelberg model, where Bi is a leader and EBi are
followers.

• fSP
Bi
;SQ

Bi
g is the strategy sets of Bi, where SP

Bi
¼

fQmin�k�max P
Bi
k jPBi

k 2 ½PBi
min � � �PBi

k � � �PBi
max�g and

PBi
k means the kth service price strategy. SQ

Bi
is the Bi

strategy for cache splitting, where 0�SQ
Bi
� 1 is the

ratio for data caching. Therefore, the ½SQ
Bi
�QBi � cache

capacity is assigned to data caching ðQD
Bi
Þ for

computation offloading services. The remaining cache

capacity ½ð1� SQ
Bi
Þ � QBi � is assigned to content

caching ðQM
Bi
Þ for mobile communication services.

• SE j
Bi2EBi

is the strategy set of E j
Bi
, where SEjBi

¼
fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg is the decision combination
for computation offloading and communication services,
respectively; 0 represents no service and 1 denotes the
service activation.

• In fUBi ;UBi

EjBi2EBi
g;UBi is the Bi payoff and UBi

E j
Bi

is the

Ej
Bi

payoff received from the Gsecond
i game process,

respectively.

• T is a time period. Gsecond
i is repeated t 2 T < ∞ time

periods with imperfect information.

During our hierarchical two-tier game ðGÞ operations,
Gfirst and Gsecond

1�i�n games work together in a coordinated
manner. In the Gfirst game process, SBSs bargain with
each other to fairly distribute CB. According to their
contributions, the SBSs make joint agreements that give
mutual advantage. In the multiple Gsecond

1�i�n game processes,
all individual game players select their strategies selfishly
to maximize their payoffs. At the end of each game
iteration, the players examine their payoffs periodically and
they dynamically adapt their decisions in an entirely
distributed fashion. During the step-by-step iteration, this
feedback process is repeated until the best solution has
been found.

2. First-Tier Game Model for Proposed Bandwidth
Allocation Algorithm

One of the most significant challenges of the 5G
network is how to accommodate the extraordinary
increases in data volume and performance expectations.
The SBS has been deemed a promising approach to meet
the increasing demand of cellular network capacity. For
providing better service to users and improving resource
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utilization, coordination protocols for bandwidth
allocation problems are needed to effectively handle
spectrum-sharing negotiations. Decisions in bargaining
game models are exactly coincident with those in the
bandwidth allocation process. Accordingly, we develop
our first-tier bargaining game model to distribute
bandwidth for SBSs.
In our game model for the bandwidth allocation, SBSs

are game players and strategies are assigned bandwidth
amounts. To represent the amount of satisfaction of a
player toward the game outcome, we construct a utility
function for each game player. By relying on the
reciprocal interaction between the resource utilization and
user’s QoS, the utility function for Bi ðUBiÞ can be
derived from [22]:

UBi ¼
1

1� xBi

�max

�
0;
h
� �xBi � expðNBiÞ

�i�
; (1)

s.t., NBi ¼
Em

m!

Xm
c¼0

Ec

c!
and 0�xBi � 1

,
;

where NBi is the service blocking probability, and xBi is a
control parameter of the Bi utility function. Based on the
traffic information, such as bandwidth capacity, channel
size, and call duration time, NBi can be estimated
according to Erlang’s formula [17]. E is the total amount
of offered traffic in Bi and m is the number of wireless
channels for Bi. Owing to the current traffic
characteristics, the xBi value is defined as the cache hitting
ratio of Bi; the larger is the value of xBi , the more
sensitive is the utility to the NBi

By employing a bargaining approach, SBSs in our
first-tier game can be team players, can cooperate with
each other, and can make a collective decision Based on
the concept of relative utilitarianism [11], [12], we adopt
the relative utilitarian bargaining solution (RUBS), and
develop an adaptive feedback bargaining model to
iteratively adjust the bandwidth allocation. RUBS fulfills
the axioms of i) Pareto efficiency, ii) independence of
equivalent utility representations, and iii) symmetry [12].
Under dynamically changing 5G network environments,
this approach is adaptable to approximate a fair-efficient
system performance.
In the bargaining solution, the solution set ðWÞ is

normally interpreted as the set of feasible utility payoffs to
the game players. A point P ¼ fUB1 � � �UBmg 2 W can be
achieved if all SBSs agree to it. In the case of agreement,
game player Bi receives UBi . According to the relative
utilitarianism, the desirable best bargaining solution for a
utility vector fU�

B1
� � �U�

Bm
g is obtained as:

�
U� ¼fU�

B1
� � �U�

Bm
g��U� solves

max
hSB1 ���SBn i

X
Bi2B

	 UBi

Umax
Bi

�Umin
Bi


1�qBi
�
;

(2)

s.t., 0� UB
Umax

B �Umin
B

� 1 and qBi
¼ PBiP

Bj2B
PBj

;

where qBi
is the Bi service price strategy. It is the relative

ability to exert influence over other SBSs. By considering
the system efficiency of SBSs, we can give appropriate
incentives or punishments to each individual SBS; the
SBS with a higher service price obtains more bandwidth
resources than other SBSs.

3. Second-Tier Game Model for Caching Algorithms

UE is currently expected to support complex
applications, such as multimedia processing, online
gaming, virtual reality, and sensing. However, owing to the
limited computation resources and power supplies, cloud
computing has been introduced as state-of-the-art
technology. In the 5G network infrastructure, UE can
offload its computationally intensive tasks to resource-rich
SBSs, which enable their corresponding UE to elastically
utilize resources in an on-demand fashion [5]. In most
scenarios of cloud computing services, computation
execution and required data access are always tightly
coupled [20]. Therefore, inter-communication among the
UE, SBS, and remote cloud server is a key factor of delay
latency. To effectively address this control issue, further
integration of cloud computing in the wireless
communication environment promotes many practical
challenges related to system performance.
To harness the synergy effect, we develop a second-tier

game by using the Stackelberg game model. Traditionally,
in a Stackelberg game, one player acts as a leader and the
others act as followers. The main goal is to find an optimal
strategy for the leader, assuming that the followers react in
such a rational way while optimizing their objective
functions with consideration of the leader’s actions [10].
In our second-tier game model, each SBS is a leader, and
its corresponding UE are followers. The main goal of a
leader is to translate the selfish motives of followers into
socially desirable actions. As followers, UE devices
attempt to maximize their utility functions in a distributed
online fashion. The UE decisions are applied as the input
to the SBS control adjustment procedure. Therefore,
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control decisions are coupled with each other in a
hierarchical interaction relationship. This feedback-based
iterative process continues until a satisfactory solution is
obtained. As a leader, each SBS make decisions for
caching management and the service price. As followers,
UE devices select their strategies for offloading
computations and communications.
SBS caching technology was recently proposed to cache

popular data and content in SBSs. It is becoming a
promising solution to transcend the service delays of 5G
networks. Usually, SBS caching has advantages. First, the
distances between the required computation data or
communication contents and UE are further decreased.
Hence, the end-to-end access delay can potentially be
further reduced. Second, SBS caching mitigates the front-
haul traffic congestion problem by replacing the front-haul
capacity with a cache capacity at the local SBSs. Without
a caching technique, the UE should download these files
via the front-haul. Third, the request load to origin servers
in a remote area can be reduced. Caching at the SBSs can
directly provide required data and content instead of
straining the server connections [5].
In this study, we assume that a holistic caching structure

on each SBS can be split, thereby leveraging a split-cache.
One part caches popular content for communication
services; the other part caches popular data for computation
offloading services. This method can improve the system
performance while balancing communication and
computation services. In practice, each SBS’s cache size is
limited; thus it is imperative to make two important
decisions: one regarding cache splitting, which is used to
adaptively split the cache capacity for data and content, and
the other regarding the cache placement strategy, which is
used to decide caching data and content with consideration
of the frequency of data and content requests.
In our second-tier game, each individual SBS adaptively

splits the total cache capacity ðQBÞ for data file caching
ðQD

B Þ and content file caching ðQM
B Þ, where QB ¼

QD
B þ QM

B . To find the best solution to the cache splitting
problem, we adopt the concepts of Kalai–Smorodinsky
bargaining solution (KSBS) and egalitarian bargaining
solutions (EBS). The main feature of KSBS is that the
increase of the bargaining set size in a direction
favorable to a specific player always benefits that player.
In short, it can be considered that the KSBS is the
maximal point that maintains the ratios of gains.
Unlike KSBS, the EBS has even stronger monotonicity

requirements, while satisfying independence conditions
[10]. Therefore, KSBS equalizes the ratios between the
players’ payoffs and their ideal payoffs, while the EBS
equalizes the players’ payoffs. To design our cache

splitting algorithm, data caching ðQD
B Þ and content

caching ðQM
B Þ are assumed as game players, and we split

QBi of Bi as follows:

dHtðQD
Bi
Þ

XHtðQM
Bi
Þ¼

dHtðOD
Bi
Þ¼fOD

Bi
¼Xjoptimal

�
dHtðXÞ�g

XHtðOM
Bi
Þ¼fOM

Bi
¼Yjoptimal

�
XHtðYÞ

�g
 !c

;

(3)

where dHtð�Þ and XHtð�Þ are the cache hit ratio per
cache size of QD

Bi
and QM

Bi
, respectively, at time Ht.

OD
Bi

and OM
Bi

guarantee the ideal gains of dHtð�Þ and
XHtð�Þ; they are the maximal possible ratios. The KSBS
and EBS correspond to c = 1 and c = 0, respectively,
where 0 ≤ c ≤ 1.
Under the dynamic 5G network environment, a fixed

value of c cannot effectively adapt to the changing
conditions. In this scheme, it is treated as an online
decision problem and adaptively modifies the c value. To
fine-tune the system performance, it is a suitable
approach. When the difference of dðOD

Bi
Þ and XðOM

Bi
Þ is

high, we can place more emphasis on the axiom of
individual monotonicity. In this case, KSBS is more
suitable. When the difference of dðOD

Bi
Þ and XðOM

Bi
Þ is

low, we strongly depend on the axiom of strong equality.
In this case, EBS is more suitable. In the proposed
algorithm, the value of c is dynamically adjusted based on
the current values of dðOD

Bi
Þ and XðOM

Bi
Þ. Therefore, the

system can be more responsive to current 5G network
conditions by the real-time network monitoring. The value
of c at time Ht is given by

c ¼ jdHtðOD
Bi
Þ � XHtðOM

Bi
Þj

max dHtðOD
Bi
Þ;XHtðOM

Bi
Þ

	 

:

(4)

Owing to the limited cache capacity, it is impossible to
cache all requested data and content. Therefore, popular
data and content are properly cached in each SBS to
reduce delays and system overhead. To develop a cache
placement algorithm, we assume there is a computation
data file set D and a communication content file set M,
and files in D and M can be possibly cached in each SBS.
The popularity distributions among D and M are
represented by vectors, which are frequently requested by
UE devices. Generally, the vectors can be modeled by
a Zipf distribution, which is a discrete probability
distribution commonly used in the modeling of rare events
[13]. As most of the cache-placing work assumes perfect
content popularity, we also adopt the Zipf distribution to
model the file popularity, and we implement our cache
placement algorithm according to this distribution.
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4. Second-Tier Game Model for 5G Services

In our second-tier game model, SBSs and UE are
assumed to be self-reflective game players who make
their decisions for the goal of maximizing their
perceived payoffs. By using a repeated interactive
approach, each player’s behavior might affect the
behavior of other players. Therefore, control decisions
are joined, which causes cascading interactions of other
players. Based on their utility functions, all game
players make their decisions to find the most profitable
strategy.
We begin to describe a follower’s utility function

by using two terms that capture the tradeoff between
cooperative and non-cooperative propensities.
Cooperative propensity is modeled using a Taguchi loss
function, which interprets a follower’s dissatisfaction as
increasing as the variation increases from their desired
communication bandwidth amount [14]. This approach
guides selfish UE toward a socially desirable outcome.
Non-cooperative propensity is modeled according to the
entity’s own payoff, which corresponds to the received
benefit minus the incurred cost. Based on this
assumption, the utility function of Ek

Bi
ðUBi

EkBi
Þ is defined

as:

s.t.,

D
�
PBi ;HðEk

Bi
Þ
�

¼
1
f�
�
X� log HðEk

Bi
Þ

	 
�
�PBi ; if data is cacheed�

X� log HðEk
Bi
Þ

	 
�
�PBi ; otherwise

8>><
>>:
C
�
PBi ;CðEk

Bi
Þ
�

¼
1
d�
�
Y� log CðEk

Bi
Þ

	 
�
�PBi ;

if content is

cacheed�
Y� log CðEk

Bi
Þ

	 
�
�PBi ; otherwise

;

8>>><
>>>:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

where CðEk
Bi
Þ;HðEk

Bi
Þ are the Ek

Bi
requested

communication bandwidth and offloading computation
amounts, respectively. lEkBi

and wEkBi
denote the Ek

Bi

satisfaction factors for communication and computation
services. Dð�Þ, Cð�Þ are offloading computation and
communication cost functions of Ih

k , respectively. Let
sEkBi

and /Ek
Bi

be the Ek
Bi

degree of envy and degree of
guilt. Based on the concept of inequality aversion, social
welfare preference is implemented in the follower’s
utility function.
As a leader, each individual SBS considers its own

payoff and social welfare. To address this multi-
objective control problem, it is necessary to find the
best compromise solution while maintaining a good
balance. Based on the reciprocal relationship of two
objectives, the utility function of Bi at time Ht ðUHt

Bi
ð�ÞÞ

is defined as:

UHt
Bi
ðPBi ;EBi ;SQ

Bi
Þ

¼ ð1�aÞ�
X

ElBi2EBi

 
D
�
PBi ;HðEl

Bi
Þ
�
þC
�
PBi ;CðEl

Bi
Þ
�!0

B@
1
CA

þ a�
X

ElBi2EBi

UBi

ElBi

�
PBi ;CðEl

Bi
Þ;HðEl

Bi
Þ
�0

B@
1
CA; ð6Þ

s.t.,a¼

�P
E l
Bi2EBi

UBi

ElBi
PBi ;CðEl

Bi
Þ;HðEl

Bi
Þ

	 
�2

jEBi j�
P

ElBi2EBi
UBi

ElBi

	
PBi ;CðEl

Bi
Þ;HðEl

Bi
Þ

� �2 :

To learn the traffic situation in 5G networks, Bi

periodically monitors the current local and global
information; local information is its (Bi’s) own payoff,
and global information represents the situation of
neighboring SBSs. If the strategy PBi

k is selected at time

UBi

EkBi
PBi ;CðEk

Bi
Þ;HðEk

Bi
Þ

	 

¼
�
lEkBi

� log CðEk
Bi
Þ

	 
�
þ
�
wEk

Bi
� log HðEk

Bi
Þ

	 
�

�
sEkBi

jEBi j � 1

X
ElBi2EBi
ElBi 6¼EkBi

max

�
CðEl

Bi
Þ � CðEk

Bi
Þ; 0
�� �

0
BBBB@

1
CCCCA

� C
�
PBi ;CðEk

Bi
Þ
�

�
/EkBi

jEBi j � 1

X
ElBi2EBi
ElBi 6¼EkBi

max

�
CðEk

Bi
Þ � CðEl

Bi
Þ; 0
�� �

0
BBBB@

1
CCCCA

�D PBi ;HðEk
Bi
Þ

	 

;

(5)
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Ht�1 by Bi, the latter updates the strategy of the PBi
k

learning value ðLHtðPBi
k ;BiÞÞ for the next time Ht, as

follows:

LHtðPBi
k ;BiÞ¼

�
ð1�vÞ�LHt�1ðPBi

k ;BiÞ
�
þ
�
v�½HþY�

�
;

(7)

s.t.,H¼n�UHt�1
Bi

ðPBi ;EBi ;SQ
Bi
Þ;

Y¼ ð1�nÞ
jBj�1

�
X

Bj2B;Bj 6¼Bi

LHt�1ðPBj

k ;BjÞ
8<
:

9=
;;

and n

¼min
1
2
;

1
jBj�1

�
X

Bj2B;Bj 6¼Bi

jMHt�1ðBjÞ�MHt�1ðBiÞj
MHt�1ðBiÞ

0
@

1
A

0
@

1
A;

where v is the learning rate that models how the L-
values are updated. In (7), H and Y represent local
and global learning values, and ξ is a control factor for
the weighted average between different learning
approaches. MHt�1ðBjÞ is the total traffic amount of Bj

at time Ht�1.
Based on the Lð�Þ values, a strategy selection

distribution ðPÞ for each SBS is defined. To respond to the
current 5G network situation at time Ht, we determine
PBi

Ht
¼ fPHtðPBi

minÞ � � � PHtðPBi
k Þ � � � PHtðPBi

maxÞg as the
probability distribution of the PBi strategy selection; it is
sequentially modified over time. From PBi

Ht
, the PBi

k
strategy selection probability by Bi at time Ht ðPHtðPBi

k ÞÞ
is defined as:

PHtðPBi
k Þ ¼

EXP

�
LHtðPBi

k ;BiÞ
�

Pmax

e¼min
EXP

�
LHtðPBi

e ;BiÞ
� : (8)

In each game round, the learning process sequentially
proceeds according to (5) to (8), and the Bi stochastically
selects the PBi strategy using its strategy selection
distribution ðPBiÞ. In this study, we effectively implement
the second-tier game model by adopting the dynamic-
learning-based Stackelberg model. In each game period,
the leaders and followers attempt to maximize their
payoffs by modifying their respective strategies.

max
SEjBi

UBi
EBk

i

	
PBi ;CðEk

Bi
Þ;HðEk

Bi
Þ

� �

and max
PBi2SP

Bi ;S
Q
Bi

UHt
Bi
ðPBi ; EBi ;SQ

Bi
Þ

	 

:

(9)

III. Performance Evaluation

To ensure a fair comparison, the following assumptions
and system scenario were used.

• The simulated system consisted of 50 SBSs, and the
number of UE devices was 1,000. The front-haul link
capacity ðCBÞ of each SBS was 4 Gbps.

• The total wireless bandwidth ðCÞ was 100 Gbps, which
was distributed to each SBS, and QB was 2 Gbyte.

• The service price strategies in SP
Bi

are defined as

PB
min¼1 ¼ 1, PB

2 ¼ 1:2, PB
3 ¼ 1:4, PB

4 ¼ 1:6, PB
5 ¼ 1:8

and PB
max¼6 ¼ 2.

• The wireless channel size was 128 Mbps, and the
bandwidth assignment for application services was
specified in terms of channels.

• According to the UE characteristics, service requests
were generated based on the Poisson process with rate k
(services/s), and the range varied from zero to three.

• There were eight different service requests, which were
randomly generated from the UE.

• To represent various application services, eight different
traffic types were assumed based on the connection
duration and bandwidth requirement. They were
generated with equal probability.

• The durations of service applications were exponentially
distributed.

• The system performance measures obtained on the basis
of 100 simulation runs were plotted as functions of the
service request generation rate.

• For simplicity, we assumed the absence of physical
obstacles in the experiments.
To demonstrate the validity of our proposed method, we

measured the bandwidth utilization, access delay, and
system throughput. Table 1 shows the system parameters
used in the simulation. The major system control
parameters of the simulation, as presented in the table,
facilitated the development and implementation of our
simulator.
Figure 1 gives the performance comparison of each

scheme in terms of the bandwidth utilization. From this
figure, we can observe that all schemes exhibit a similar
trend. However, our first-tier game efficiently allocates
available bandwidth to each SBS via RUBS, and it
iteratively adjusts the bandwidth allocation based on the
adaptive feedback bargaining model. It leads to higher
bandwidth utilization and provides an ideal solution
characterized by 5G network environments.
Figure 2 presents the normalized access delay for each

scheme. The access delay specifies the time required for a
data bit to traverse the network from the source to
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destination. The access delay quickly increases under the
heavy traffic situation. We also observe that all the schemes
have almost identical performances when the traffic load is
light. During the 5G network operation, there is no doubt
that cache-enabled SBSs can obviously reduce the access
delay. Based on our cache splitting and placing methods,
each SBS intelligently monitors every service request from
the UE and effectively manages the cache operation.
The curves in Fig. 3 show normalized system

throughput in the 5G cellular network system. For the
system operator, throughput maximization is the main

Table 1. System parameters used in the simulation experiments.

Type
Comp.

offloading
Min.

require.
Bandwidth
require.

Duration
average

I 100 MHz/s 128 Mbps 256 Mbps
1,800 s
(30 min)

II 120 MHz/s 256 Mbps 512 Mbps
1,800 s
(30 min)

III 150 MHz/s 384 Mbps 768 Mbps
300 s
(5 min)

IV 180 MHz/s 512 Mbps 1.28 Gbps
300 s
(5 min)

V 200 MHz/s 640 Mbps 1.28 Gbps
1,800 s
(30 min)

VI 240 MHz/s 768 Mbps 1.54 Gbps
1,800 s
(30 min)

VII 270 MHz/s 896 Mbps 1.82 Gbps
3,000 s
(50 min)

VIII 300 MHz/s 1.28 Gbps 2.56 Gbps
1,200 s
(20 min)

Parameters Value Description

n 50 Number of SBSs in the system

m 1,000 Number of UEs in the system

l 1.5 ≤ l ≤ 2.5
Satisfaction factor of

communication service;
randomly selected

w 1.5 ≤ w ≤ 2.5
Satisfaction factor of

computation service; randomly
selected

s 0.2 Degree of envy in UE

/ 0.1 Degree of guilty in UE

f 2 Data cache profit factor

d 2 Content cache profit factor

X 0.9
Cost factor for computation

service

Y 0.8
Cost factor for communication

service

v 0.3
Learning rate to update the

L-values
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Fig. 1. Bandwidth utilization of the network system.
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concern. As shown in Fig. 1, all schemes exhibit a similar
trend. This is intuitively correct; usually the network
throughput is obtained by using the bandwidth resource.
In our second-tier game, SBSs and UE devices are game
players and adaptively select strategies to maximize their
payoffs. According to an interactive feedback mechanism,
game players effectively learn the current system
environments and attempt to improve their payoffs, which
correlates with the throughput maximization.

IV. Conclusions

To address the extraordinarily rapid growth of future
traffic services, the synergistic combination of
communication, caching, and computing algorithms is a
promising technique for 5G networks. In this paper, we
proposed an integrated holistic control scheme by
integrating bandwidth allocation, caching splitting, and
computation offloading mechanisms. Based on our two-
tier game model, we explore effective solutions to the
fundamental problems of determining a means to decide
control decisions for enabling adequate network
performance. From the viewpoint of SBSs, their own
payoffs and social welfare are important factors. From the
viewpoint of UE, it is necessary to capture the tradeoff
between cooperative and non-cooperative propensities.
Using the step-by-step interactive feedback process,

SBSs and UE sequentially interact and select their
respective strategies to maximize their expected benefits.
Under incomplete information situations, it is a practical
and suitable operational approach. According to the
dynamic bargaining and repeated Stackelberg game
procedures, synergistic and complementary features can
be provided to adapt to dynamic 5G network situations.
We verified the effectiveness of our proposed scheme

using extensive simulations. Numerical results showed the
superiority of our integrated scheme compared to existing
schemes. Furthermore, our game-based 5G network
control approach is expected to be an interesting topic for
future work. New interesting research topics can include
socially aware concepts to further improve the quality of
experience of 5G networks. To date, security issues
require examination. Therefore, another interesting
direction is to address the network security issues in the
5G network system from the operator’s perspective.
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