DOI QR코드

DOI QR Code

Recent Advances in Polybenzimidazole (PBI)-based Polymer Electrolyte Membranes for High Temperature Fuel Cell Applications

  • Vijayakumar, Vijayalekshmi (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • Received : 2019.10.10
  • Accepted : 2019.10.21
  • Published : 2019.12.10

Abstract

Polybenzimidazole (PBI), an engineering polymer with well-known excellent thermal, chemical and mechanical stabilities has been recognized as an alternative to high temperature polymer electrolyte membranes (HT-PEMs). This review focuses on recent advances made on the development of PBI-based HT-PEMs for fuel cell applications. PBI-based membranes discussed were prepared by various strategies such as structural modification, cross-linking, blending and organic-inorganic composites. In addition, intriguing properties of the PBI-based membranes as well as their fuel cell performances were highligted.

Keywords

References

  1. X. Li, P. Wang, Z. Liu, J. Peng, C. Shi, W. Hu, Z. Jiang, and B. Liu, Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton exchange membrane fuel cells, J. Power Sources, 393, 99-107 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.011
  2. C. Y. Wong, W. Y. Wong, K. Ramya, M. Khalid, K. S. Loh, W. R. W. Daud, K. L. Lim, R. Walvekar, and A. A. H. Kadhum, Additives in proton exchange membranes for low and high temperature fuel cell applications: A review, Int. J. Hydrogen Energy, 44, 6116-6135 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.084
  3. T. Y. Son, T. H. Kim, H. J. Kim, and S. Y. Nam, Problems and solutions of anion exchange membranes for anion exchange membrane fuel cell (AEMFC), Appl. Chem. Eng., 29, 489-496 (2018). https://doi.org/10.14478/ace.2018.1074
  4. S. W. Chuang, S. L. C. Hsu, and Y. H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, J. Membr. Sci., 305, 353-363 (2007). https://doi.org/10.1016/j.memsci.2007.08.033
  5. Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells - Preparation, characterization and fuel cell demonstration, Fuel Cells, 4, 147-159 (2004) https://doi.org/10.1002/fuce.200400020
  6. X. Tian, S. Wang, J. Li, F. Liu, X. Wang, H. Chen, D. Wang, H. Ni, and Z. Wang, Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications, Appl. Surf. Sci., 465, 332-339 (2019). https://doi.org/10.1016/j.apsusc.2018.09.170
  7. M. R. Berber and N. Nakashima, Bipyridine-based polybenzimidazole membranes with outstanding hydrogen fuel cell performance at high temperature and non-humidifying conditions, J. Membr. Sci., 591, 117354 (2019). https://doi.org/10.1016/j.memsci.2019.117354
  8. G. J. Dahe, R. P. Singh, K. W. Dudeck, D. Yang, and K. A. Berchtold, Influence of non-solvent chemistry on polybenzimidazole hollow fiber membrane preparation, J. Membr. Sci., 577, 91-103 (2019). https://doi.org/10.1016/j.memsci.2019.02.001
  9. S. K. Kim, T. Ko, K. Kim, S. W. Choi, J. O. Park, K. H. Kim, C. Pak, H. Chang, and J. C. Lee, Poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] and poly[6-fluoro-3-(pyridin-2-yl)-3,4-dihydro-2H-benzoxazine] based polymer electrolyte membranes for fuel cells at elevated temperature, Macromol. Res., 20, 1181-1190 (2012). https://doi.org/10.1007/s13233-012-0175-2
  10. Q. X. Wu, Z. F. Pan, and L. An, Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications, Renew. Sustain. Energy Rev., 89, 168-183 (2018). https://doi.org/10.1016/j.rser.2018.03.024
  11. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci., 34, 449-477 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.003
  12. A. Vassiliev, A. K. Reumert, J. O. Jensen, and D. Aili, Durability and degradation of vapor-fed direct dimethyl ether high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 432, 30-37 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.062
  13. J. Kerres and V. Atanasov, Cross-linked PBI based high temperature membranes: Stability, conductivity and fuel cell performance, Int. J. Hydrogen Energy, 40, 14723-14735 (2015). https://doi.org/10.1016/j.ijhydene.2015.08.054
  14. L. Wang, Z. Liu, J. Ni, M. Xu, C. Pan, D. Wang, D. Liu, and L. Wang, Preparation and investigation of block polybenzimidazole membranes with high battery performance and low phosphoric acid doping for use in high-temperature fuel cells, J. Membr. Sci., 572, 350-357 (2019). https://doi.org/10.1016/j.memsci.2018.10.083
  15. H. Namazi and H. Ahmadi, Novel proton conducting membranes based on butylsulfonated poly[2,2'-(m-pyrazolidene)-5,5'-bibenzimidazole] (BS-PPBI): Proton conductivity, acid doping and water uptake properties, J. Membr. Sci., 383, 280-288 (2011). https://doi.org/10.1016/j.memsci.2011.08.065
  16. S. W. Choi, J. O. Park, C. Pak, K. H. Choi, J. C. Lee, and H. Chang, Design and synthesis of cross-linked copolymer membranes based on poly(benzoxazine) and polybenzimidazole and their application to an electrolyte membrane for a high-temperature PEM fuel cell, Polymers, 5, 77-111 (2013). https://doi.org/10.3390/polym5010077
  17. X. Wang, S. Wang, C. Liu, J. Li, F. Liu, X. Tian, H. Chen, T. Mao, J. Xu, and Z. Wang, Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs, Electrochim. Acta, 283, 691-698 (2018). https://doi.org/10.1016/j.electacta.2018.06.197
  18. T. T. Ou, H. Chen, B. Hu, H. Zheng, W. Li, and Y. Wang, A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell, Int. J. Hydrogen Energy, 43, 12337-12345 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.166
  19. S. K. Kim, S. W. Choi, W. S. Jeon, J. O. Park, T. Ko, H. Chang, and J. C. Lee, Cross-linked benzoxazine-benzimidazole copolymer electrolyte membranes for fuel cells at elevated temperature, Macromolecules, 45, 1438-1446 (2012). https://doi.org/10.1021/ma202694p
  20. S. K. Kim, K. H. Kim, J. O. Park, K. Kim, T. Ko, S. W. Choi, C. Pak, H. Chang, and J. C. Lee, Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole), J. Power Sources, 226, 346-353 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.019
  21. L. Wang, Z. Liu, Y. Liu, and L. Wang, Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells, J. Membr. Sci., 583, 110-117 (2019). https://doi.org/10.1016/j.memsci.2019.04.030
  22. H. Chen, S. Wang, J. Li, F. Liu, X. Tian, X. Wang, T. Mao, J. Xu, and Z. Wang, Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications, J. Taiwan Inst. Chem. Eng., 95, 185-194 (2019). https://doi.org/10.1016/j.jtice.2018.06.036
  23. N. Nambi Krishnan, A. Konovalova, D. Aili, Q. Li, H. S. Park, J. H. Jang, H. J. Kim, and D. Henkensmeier, Thermally crosslinked sulfonated polybenzimidazole membranes and their performance in high temperature polymer electrolyte fuel cells, J. Membr. Sci., 588, 117218 (2019). https://doi.org/10.1016/j.memsci.2019.117218
  24. H. L. Lin, C. R. Hu, S. W. Lai, and T. L. Yu, Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells, J. Membr. Sci., 389, 399-406 (2012). https://doi.org/10.1016/j.memsci.2011.11.005
  25. M. Niu, C. Zhang, G. He, F. Zhang, and X. Wu, Pendent piperidinium-functionalized blend anion exchange membrane for fuel cell application, Int. J. Hydrogen Energy, 44, 15482-15493 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.172
  26. M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes, Int. J. Hydrogen Energy, 41, 12069-12081 (2016). https://doi.org/10.1016/j.ijhydene.2016.05.227
  27. M. Won, S. Kwon, and T. H. Kim, High performance blend membranes based on sulfonated poly(arylene ether sulfone) and poly-(p-benzimidazole) for PEMFC applications, J. Ind. Eng. Chem., 29, 104-111(2015). https://doi.org/10.1016/j.jiec.2015.03.022
  28. N. N. Krishnan, D. Joseph, N. M. H. Duong, A. Konovalova, J. H. Jang, H. J. Kim, S. W. Nam, and D. Henkensmeier, Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells, J. Membr. Sci., 544, 416-424 (2017). https://doi.org/10.1016/j.memsci.2017.09.049
  29. M. S. Shin, D. E. Kim, and J. S. Park, Preparation and characterizations of poly(arylene ether sulfone)/ $SiO_2$ composite membranes for polymer electrolyte fuel cell, Membr. J., 27, 182-188 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.182
  30. C. Lee, H. Na, Y. Jeon, H. J. Hwang, H. J. Kim, I. Mochida, S. H. Yoon, J. I. Park, and Y. G. Shul, Poly(ether imide) nanofibrous web composite membrane with $SiO_2$/heteropolyacid ionomer for durable and high-temperature polymer electrolyte membrane (PEM) fuel cells, J. Ind. Eng. Chem., 74, 7-13 (2019). https://doi.org/10.1016/j.jiec.2019.01.034
  31. Y. Ozdemir, N. Uregen, and Y. Devrim, Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells, Int. J. Hydrogen Energy, 42, 2648-2657 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.132
  32. X. Zhang, Q. Liu, L. Xia, D. Huang, X. Fu, R. Zhang, S. Hu, F. Zhao, X. Li, and X. Bao, Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range, J. Membr. Sci., 574, 282-298 (2019). https://doi.org/10.1016/j.memsci.2018.12.085
  33. P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, and P. Manisankar, Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: Synthesis and characterizations, Int. J. Hydrogen Energy, 43, 4763-4772 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.010
  34. S. Singha, R. Koyilapu, K. Dana, and T. Jana, Polybenzimidazole-clay nanocomposite membrane for PEM fuel cell: Effect of organomodifier structure, Polymer, 167, 13-20 (2019). https://doi.org/10.1016/j.polymer.2019.01.066
  35. Y. Lv, Z. Li, M. Song, P. Sun, X. Yin, and S. Wang, Preparation and properties of ZrPA doped CMPSU cross-linked PBI based high temperature and low humidity proton exchange membranes, React. Funct. Polym., 137, 57-70 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.01.014
  36. M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-$Fe_2TiO_5$ nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC), Int. J. Hydrogen Energy, 41, 2896-2910 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.100
  37. P. Mustarelli, E. Quartarone, S. Grandi, A. Carollo, and A. Magistris, Polybenzimidazole-based membranes as a real alternative to nafion for fuel cells operating at low temperature, Adv. Mater., 20, 1339-1343 (2008). https://doi.org/10.1002/adma.200701767
  38. A. A. Lysova, I. A. Stenina, A. O. Volkov, I. I. Ponomarev, and A. B. Yaroslavtsev, Proton conductivity of hybrid membranes based on polybenzimidazoles and surface-sulfonated silica, Solid State Ionics, 329, 25-30 (2019). https://doi.org/10.1016/j.ssi.2018.11.012
  39. E. Abouzari Lotf, M. Zakeri, M.M. Nasef, M. Miyake, P. Mozarmnia, N.A. Bazilah, N.F. Emelin, and A. Ahmad, Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 412, 238-245 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.057
  40. N. N. Krishnan, S. Lee, R. V. Ghorpade, A. Konovalova, J. H. Jang, H. J. Kim, J. Han, D. Henkensmeier, and H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated $TiO_2$ as both filler and crosslinker, and their use in the HT-PEM fuel cell, J. Membr. Sci., 560, 11-20 (2018). https://doi.org/10.1016/j.memsci.2018.05.006

Cited by

  1. Composite Polymers Development and Application for Polymer Electrolyte Membrane Technologies—A Review vol.25, pp.7, 2019, https://doi.org/10.3390/molecules25071712
  2. In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5‐benzimidazole) arms for high‐temperature proton exchange membrane fuel cells vol.44, pp.11, 2019, https://doi.org/10.1002/er.5571
  3. Crosslinked Pore-Filling Anion Exchange Membrane Using the Cylindrical Centrifugal Force for Anion Exchange Membrane Fuel Cell System vol.12, pp.11, 2019, https://doi.org/10.3390/polym12112758