DOI QR코드

DOI QR Code

Potential Applicabilities of Ammonia in Future Hydrogen Energy Supply Industries

미래 수소 에너지 공급 산업에서 암모니아의 활용성

  • Lee, Sooyoung (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 이수영 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2019.11.15
  • Accepted : 2019.11.21
  • Published : 2019.12.10

Abstract

As a non-renewable energy source, fossil fuel causes environment problems, numerous efforts have been made for a global decarbonization, for example, the realization of Power 2 Gas (P2G) system as a definitive research goal. In particular, ammonia is regarded as an emerging source since it can be used as a hydrogen carrier and production alongside for fuel cell applications. In this mini-review, we summarized the properties of ammonia and further highlighted the worldwide research trend for its superb potential in hydrogen energy supply industries.

비재생 에너지원인 화석 연료의 환경 문제들이 발생하면서 국제 사회는 탈탄소화 사회를 지향하고 있으며 이를 위해 Power 2 Gas (P2G) 시스템의 실증화를 목표로 많은 연구들이 진행 중이다. 그 중 암모니아는 수소 캐리어의 역할, 수소 생산 공급체의 역할, 직접적인 사용 등의 많은 이점들이 있다. 본 총설에서는 암모니아의 특성과 해외 동향의 움직임을 분석하여 암모니아의 수소 에너지 공급 산업에서의 잠재력에 대해 기술하고자 한다.

Keywords

References

  1. T. Zhang, H. Miyaoka, H. Miyaoka, T. Ichikawa, and Y. Kojima, Review on ammonia absorption materials: Metal hydrides, halides, and borohydrides, ACS Appl. Energy Mater., 1, 232-242 (2018). https://doi.org/10.1021/acsaem.7b00111
  2. Y. Zhou, G. Zhang, M. Yu, X. Wang, J. Lv, and F. Yang, Free-standing 3D porous N-doped graphene aerogel supported platinum nanocluster for efficient hydrogen production from ammonia electrolysis, ACS Sustain. Chem. Eng., 6, 8437-8446 (2018). https://doi.org/10.1021/acssuschemeng.8b00586
  3. H. I. Park, I. Kim, B. K. Lee, J. R. Haw, and T. Hur, Life cycle assessment on hydrogen production by direct thermal cracking of natural gas, J. Korean Ind. Eng. Chem., 14, 799-806 (2003).
  4. M. Gotz, J. Lefebvre, F. Mors, A. M. Koch, F. Graf, S. Bajohr, R. Reimert, and T. Kolb, Renewable power-to-gas: A technological and economic review, Renew. Energy, 85, 1371-1390 (2016). https://doi.org/10.1016/j.renene.2015.07.066
  5. I. A. Gondal,, Hydrogen integration in power-to-gas networks, Int. J. Hydrogen Energy, 44, 1803-1815 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.164
  6. S. B. Walker, M. Fowler, and L. Ahmadi, Comparative life cycle assessment of power-to-gas generation of hydrogen with a dynamic emissions factor for fuel cell vehicles, J. Energy Storage, 4, 62-73 (2015). https://doi.org/10.1016/j.est.2015.09.006
  7. S. Uhm, M. Seo, and J. Lee, Review: Competitiveness of formic acid fuel cells: In comparison with methanol, J. Korean Ind. Eng. Chem., 27, 123-127 (2016).
  8. A. Alera-Medina, H. Xiao, M. Owen-Jones, W. I. F. David, and P. J. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69, 63-102 (2018). https://doi.org/10.1016/j.pecs.2018.07.001
  9. R. Lan and S. Tao, Ammonia as a suitable fuel for fuel cells, Front. Energy Res., 2, 1-4 (2014).
  10. M. Xue, Q. Wang, B.-L. Lin, and K. Tsunemi, Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints, ACS Sustain. Chem. Eng., 7, 12494-12500 (2019). https://doi.org/10.1021/acssuschemeng.9b02169
  11. W. Wang, J. M. Herreros, A. Tsolakis, and A. P. E. York, Ammonia as hydrogen carrier for transportation: Investigation of the ammonia exhaust gas fuel reforming, Int. J. Hydrogen Energy, 38, 9907-9917 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.144
  12. A. T. Wijayanta, T. Oda, C. W. Purnomo, T. Kashiwagi, and M. Aziz, Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review, Int. J. Hydrogen Energy, 44, 15026-15044 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.112
  13. H. Quack, Conceptual design of a high efficiency large capacity hydrogen liquefier, AIP Conf. Proc., 613, 255-263 (2002).
  14. F. Shiozawa, Energy carrier towards the creation of hydrogen society, IEEI, http://ieei.or.jp/2015/05/expl150501/2/
  15. A. Godula-Jopek, W. Jehle, and J. Wellnitz, Hydrogen Storage Technologies: New Materials, Transport and Infrastructure, J. Wellnitz, 11-79, Wiley, NY, USA (2012).
  16. D. O. Berstad, J. H. Stang, and P. Neksa, Comparison criteria for large-scale hydrogen liquefaction processes, Int. J. Hydrogen Energy, 34, 1560-1568 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.058
  17. N. Boufaden, R. Akkari, B. Pawelec, J. L. G. Fierro, M. S. Zina, and A. Ghorbel, Dehydrogenation of methylcyclohexane to toluene over partially reduced Mo-$SiO_2$ catalysts, Appl. Catal. A, 502, 329-339 (2015). https://doi.org/10.1016/j.apcata.2015.05.026
  18. B. K. Boggs and G. G. Botte, On-board hydrogen storage and production: An application of ammonia electrolysis, J. Power Sources, 192, 573-581 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.018
  19. R. Hattenbach, Transportation & delivery of anhydrous ammonia, Chemical Marketing Services, Inc., CO, USA (2012).
  20. K. E. Lamb, M. D. Dolan, and D. F. Kennedy, Ammonia for hydrogen storage: A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. Hydrogen Energy, 44, 3580-3593 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.024
  21. A. Klerke, C. H. Christensen, J. K. Norskov, and T. Vegge, Ammonia for hydrogen storage: Challenges and opportunities, J. Mater. Chem., 18, 2304-2310 (2008). https://doi.org/10.1039/b720020j
  22. M. Aziz, T. Oda, and T. Kashiwagi, Comparison of liquid hydrogen, methylcyclohexane and ammonia on energy efficiency and economy, Energy Procedia, 158, 4086-4091 (2019). https://doi.org/10.1016/j.egypro.2019.01.827
  23. N. Hanada, S. Hino, T. Ichikawa, H. Suzuki, K. Takai, and Y. Kojima, Hydrogen generation by electrolysis of liquid ammonia, Chem. Commun., 46, 7775-7777 (2010). https://doi.org/10.1039/c0cc01982h
  24. J. Lee, Y. Yi, and S. Uhm, Understanding underlying processes of water electrolysis, J. Korean Ind. Eng. Chem., 19, 357-365 (2008).
  25. T. V. Choudhary, C. Sivadinarayana, and D. W. Goodman, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catal. Lett., 72, 197-201 (2001). https://doi.org/10.1023/A:1009023825549
  26. R. Atsumi, R. Noda, H. Takagi, L. Vecchione, A. Di Carlo, Z. Del Prete, and K. Kuramoto, Ammonia decomposition activity over $Ni/SiO_2$ catalysts with different pore diameters, Int. J. Hydrogen Energy, 39, 13954-13961 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.003
  27. Z.-P. Hu, C.-C. Weng, C. Chen, and Z.-Y. Yuan, Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods, Appl. Catal. A, 562, 49-57 (2018). https://doi.org/10.1016/j.apcata.2018.05.038
  28. B. X. Dong, T. Ichikawa, N. Hanada, S. Hino, and Y. Kojima, Liquid ammonia electrolysis by platinum electrodes, J. Alloys Compd., 509, S891-S894 (2011). https://doi.org/10.1016/j.jallcom.2010.10.157
  29. H. Yamamoto, H. Miyaoka, S. Hino, H. Nakanishi, T. Ichikawa, and Y. Kojima, Recyclable hydrogen storage system composed of ammonia and alkali metal hydride, Int. J. Hydrogen Energy, 34, 9760-9764 (2009) https://doi.org/10.1016/j.ijhydene.2009.10.034
  30. W. I. F. David, J. W. Makepeace, S. K. Callear, H. M. A. Hunter, J. D. Taylor, T. J. Wood and M. O. Jones, Hydrogen production from ammonia using sodium amide, J. Am. Chem. Soc., 136, 13082-13085 (2014). https://doi.org/10.1021/ja5042836
  31. J. Gwak, M. Choun, and J. Lee, Alkaline ammonia electrolysis on electrodeposited platinum for controllable hydrogen production, ChemSusChem, 9, 403-408 (2016). https://doi.org/10.1002/cssc.201501046
  32. R. Burdon, G. Palmer, and S. Chakraborty, National Hydrogen Strategy-Submission, 1-23, The Council of Australian Governments (COAG) Energy Council, Australia (2019).
  33. G. Thomas and G. Parks, Potential Roles of Ammonia in a Hydrogen Economy: A Study of Issues Related to the Use of Ammonia for Onboard Vehicular Hydrogen Storage, US DOE, 5-23, U.S. Department of Energy, Southwest Washington, D.C., USA (2006).
  34. S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, The U.S. Department of Energy's national hydrogen storage project: Progress towards meeting hydrogen-powered vehicle requirements, Catal. Today, 120, 246-256 (2007). https://doi.org/10.1016/j.cattod.2006.09.022
  35. S. Bruce, M. Temminghoff, J. Hayward, E. Schmidt, C. Munnings, D. Palfreyman, and P. Hartley, National Hydrogen Roadmap, CSIRO, 1-92, CSIRO, Australia, Australia (2018).
  36. M. Nagashima, Japan's Hydrogen Strategy and Its Economic and Geopolitical Implications, IFRI, 12-75, IFRI, Paris, France (2018).