DOI QR코드

DOI QR Code

Synthesis of Electroactive PAAc/PVA/PEG Hydrogel Soft Actuator by Radiation Processing and Their Dynamic Characteristics

방사선을 이용한 전기 활성 PAAc/PVA/PEG 하이드로겔 소프트 액추에이터의 제조 및 구동 특성 분석

  • Shin, Yerin (Graduate school of Energy Science and Technology, Chungnam National University) ;
  • Kim, So Yeon (Graduate school of Energy Science and Technology, Chungnam National University)
  • 신예린 (충남대학교 에너지과학기술대학원) ;
  • 김소연 (충남대학교 에너지과학기술대학원)
  • Received : 2019.10.14
  • Accepted : 2019.10.30
  • Published : 2019.12.10

Abstract

Over the last few decades, there have been a lot of efforts to develop soft actuators, which can be external stimuli-responsive and applied to the human body. In order to fabricate medical soft actuators with a dynamic precision control, the 3D crosslinked poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) hydrogels were synthesized in this study by using a radiation technique without noxious chemical additives or initiators. After irradiation, all hydrogels showed high gel fraction over 75% and the ATR-FTIR spectra indicated that PAAc/PVA/PEG hydrogels were successfully synthesized. In addition, the gel fraction, equilibrium water content, and compressive strength were measured to determine the change in physical properties of PAAc/PVA/PEG hydrogels according to the irradiation dose and content ratio of constituents. As the irradiation dose and amount of poly(ethylene glycol) diacrylate (PEGDA) increased, the PAAc/PVA/PEG hydrogels showed a high crosslinking density and mechanical strength. It was also confirmed that PAAc/PVA/PEG hydrogels responded to electrical stimulation even at a low voltage of 3 V. The bending behavior of hydrogels under an electric field can be controlled by changing the crosslinking density, ionic group content, applied voltage, and ionic strength of swelling solution.

지난 수십 년 동안, 외부 자극에 대한 응답성이 우수하면서도 인체에 적용할 수 있는 소프트 액추에이터 개발을 위한 많은 노력이 이어졌다. 본 연구에서는 동역학적 정밀 제어가 가능한 의료용 소프트 액추에이터를 개발하기 위해, 유해한 화학적 첨가제나 개시제 없이 방사선을 이용하여 전기 자극 반응성과 물리적 특성이 우수한 3차원 가교 구조의 poly(acrylic acid) (PAAc)/poly(vinyl alcohol) (PVA)/poly(ethylene glycol) (PEG) 하이드로겔을 합성하였다. 방사선 조사 후, 모든 하이드로겔은 75% 이상의 겔 분율을 나타내었고, 표면 반사 적외선 분광법을 통해 PAAc/PVA/PEG 하이드로겔이 성공적으로 합성되었음을 확인하였다. 또한 PAAc/PVA/PEG 하이드로겔의 겔 분율, 평형 수분 함량, 압축 강도를 측정하여 감마선의 총 조사 선량과 구성 성분의 함량비 조절에 따른 하이드로겔의 물리적 특성 변화를 확인하였다. 조사된 감마선의 선량이 증가하거나 poly(ethylene glycol) diacrylate (PEGDA)의 함량이 많을수록 PAAc/PVA/PEG 하이드로겔은 높은 가교 밀도와 우수한 기계적 강도를 나타내었다. 또한 PAAc/PVA/PEG 하이드로겔은 3 V의 저전압에서도 전기적인 자극에 반응하였고, 전기장 하에서 이동성 이온의 움직임에 따른 하이드로겔의 밴딩 거동은 하이드로겔의 가교 밀도, 이온기의 함량, 인가 전압 및 전해질 용액의 이온 농도 등을 조절함으로써 제어할 수 있음을 확인하였다.

Keywords

References

  1. L. Hines, K. Petersen, G. Z. Lum, and M. Sitti, Soft actuators for small-scale robotics, Adv. Mater., 29, 1603483 (2017). https://doi.org/10.1002/adma.201603483
  2. G. Agarwal, N. Besuchet, B. Audergon, and J. Paik, Stretchable materials for robust soft actuators towards assistive wearable devices, Sci. Rep., 6, 34224 (2016). https://doi.org/10.1038/srep34224
  3. E. T. Roche, R. Wohlfarth, J. T. Overvelde, N. V. Vasilyev, F. A. Pigula, D. J. Mooney, K. Bertoldi, and C. J. Walsh, A bioinspired soft actuated material, Adv. Mater., 26, 1200-1206 (2014). https://doi.org/10.1002/adma.201304018
  4. M. Rajagopalan and I.-K. Oh, Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide, ACS Nano., 5, 2248-2256 (2011). https://doi.org/10.1021/nn103521g
  5. I. Must, F. Kaasik, I. Poldsalu, L. Mihkels, U. Johanson, A. Punning, and A. Aabloo, Ionic and capacitive artificial muscle for biomimetic soft robotics, Adv. Eng. Mater., 17, 84-94 (2015). https://doi.org/10.1002/adem.201400246
  6. Y. L. Park, B. R. Chen, and R. J. Wood, Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors, IEEE Sens. J., 12, 2711-2718 (2012). https://doi.org/10.1109/JSEN.2012.2200790
  7. D. Chen and Q. Pei, Electronic muscles and skins: A review of soft sensors and actuators, Chem. Rev., 117, 11239-11268 (2017). https://doi.org/10.1021/acs.chemrev.7b00019
  8. Y. S. Song, Y. Sun, R. Van Den Brand, J. Von Zitzewitz, S. Micera, G. Courtine, and J. Paik, Soft robot for gait rehabilitation of spinalized rodents, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November 3-7, Tokyo, Japan, (2013).
  9. S. Kim, C. Laschi, and B. Trimmer, Soft robotics: A bioinspired evolution in robotics, Trends Biotechnol., 31, 287-294 (2013). https://doi.org/10.1016/j.tibtech.2013.03.002
  10. J. Kopecek and J. Yang, Hydrogels as smart biomaterials, Polym. Int., 56, 1078-1098 (2007). https://doi.org/10.1002/pi.2253
  11. M. Hamidi, A. Azadi, and P. Rafiei, Hydrogel nanoparticles in drug delivery, Adv. Drug Deliv. Rev., 60, 1638-1649 (2008). https://doi.org/10.1016/j.addr.2008.08.002
  12. F. Ullah, M. B. H. Othman, F. Javed, Z. Ahmad, and H. M. Akil, Classification, processing and application of hydrogels: A review, Mater. Sci. Eng. C, 57, 414-433 (2015). https://doi.org/10.1016/j.msec.2015.07.053
  13. S. Y. Kim, Research trends on polymeric hydrogels for tissue engineering applications, Tissue Eng. Regen. Med., 5, 14-25 (2008).
  14. C. Lee, J. Shin, J. S. Lee, E. Byun, J. H. Ryu, S. H. Um, D. I. Kim, H. Lee, and S. W. Cho, Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility, Biomacromolecules, 14, 2004-2013 (2013). https://doi.org/10.1021/bm400352d
  15. N. Bhattarai, J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery, Adv. Drug Deliv. Rev., 62, 83-99 (2010). https://doi.org/10.1016/j.addr.2009.07.019
  16. S. Van Vlierberghe, P. Dubruel, and E. Schacht, Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review, Biomacromolecules, 12, 1387-1408 (2011). https://doi.org/10.1021/bm200083n
  17. X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, and P. X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials, 122, 34-47 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.011
  18. D. H. Yang, D. I. Seo, D. W. Lee, S. H. Bhang, K. Park, G. Jang, C. H. Kim, and H. J. Chun, Preparation and evaluation of visible-light cured gylcol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing, J. Ind. Eng. Chem., 53, 360-370 (2017). https://doi.org/10.1016/j.jiec.2017.05.007
  19. W. E. Hennink and C. F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Del. Rev., 64, 223-236 (2012). https://doi.org/10.1016/j.addr.2012.09.009
  20. J. Maitra and V. K. Shukla, Cross-linking in hydrogels - A review, Am. J. Polym. Sci., 4, 25-31 (2014).
  21. N. Sheikh, L. Jalili, and F. Anvari, A study on the swelling behavior of poly (acrylic acid) hydrogels obtained by electron beam crosslinking, Radiat. Phys. Chem., 79, 735-739 (2010). https://doi.org/10.1016/j.radphyschem.2009.12.013
  22. M. Chen, J. Zhu, G. Qi, C. He, and H. Wang, Anisotropic hydrogels fabricated with directional freezing and radiation-induced polymerization and crosslinking method, Mater. Lett., 89, 104-107 (2012). https://doi.org/10.1016/j.matlet.2012.08.087
  23. J. Choi, B. Pant, C. Lee, M. Park, S. J. Park, and H. Y. Kim, Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique, J. Ind. Eng. Chem., 47, 41-45 (2017). https://doi.org/10.1016/j.jiec.2016.11.014
  24. K. R. Park and Y. C. Nho, Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties, Radiat. Phys. Chem., 67, 361-365 (2003). https://doi.org/10.1016/S0969-806X(03)00067-7
  25. Z. Ajji, I. Othman, and J. Rosiak, Production of hydrogel wound dressings using gamma radiation, Nucl. Instrum. Methods Phys. Res. B, 229, 375-380 (2005). https://doi.org/10.1016/j.nimb.2004.12.135
  26. S. G. A. Alla, M. Sen, and A. W. M. El-Naggar, Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation, Carbohydr. Polym., 89, 478-485 (2012). https://doi.org/10.1016/j.carbpol.2012.03.031
  27. E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J. Adv. Res., 6, 105-121 (2015). https://doi.org/10.1016/j.jare.2013.07.006
  28. L. Varshney, Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing, Nucl. Instrum. Methods Phys. Res. B, 255, 343-349 (2007). https://doi.org/10.1016/j.nimb.2006.11.101
  29. M. M. Ghobashy and M. A. Elhady, pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal, Radiat. Phys. Chem., 134, 47-55 (2017). https://doi.org/10.1016/j.radphyschem.2017.01.021
  30. A. E. H. Ali and E. S. A. Hegazy, Radiation synthesis of poly (ethylene glycol)/acrylic acid hydrogel as carrier for site specific drug delivery, J. Biomed. Mater. Res. B, 81, 168-174 (2007).
  31. J. Shang, Z. Shao, and X. Chen, Electrical behavior of a natural polyelectrolyte hydrogel: Chitosan/carboxymethylcellulose hydrogel, Biomacromolecules, 9, 1208-1213 (2008). https://doi.org/10.1021/bm701204j
  32. D. Morales, E. Palleau, M. D. Dickey, and O. D. Velev, Electro-actuated hydrogel walkers with dual responsive legs, Soft Matter, 10, 1337-1348 (2014). https://doi.org/10.1039/C3SM51921J