DOI QR코드

DOI QR Code

칼륨이온 공존 수용액 내 칼슘이온 제거를 위한 제올라이트 개질 연구

A Study on the Modified Zeolite for the Removal of Calcium Ion in a Potassium Ion Coexistence Solution

  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김지유 (경기대학교 환경에너지공학과) ;
  • 이주열 ((주)애니텍 기술연구소) ;
  • 박병현 ((주)애니텍 기술연구소) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Lee, Ye Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Jiyu (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Lee, Ju-Yeol (Technology Institute, Anytech Co., Ltd) ;
  • Park, Byung-Hyun (Technology Institute, Anytech Co., Ltd) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 투고 : 2019.09.20
  • 심사 : 2019.11.14
  • 발행 : 2019.12.10

초록

본 연구는 제올라이트를 이용한 칼슘이온 제거에 대한 것으로 시멘트 산업에서 발생하는 cement kiln dust를 이용한 CaCO3 제조 공정의 문제를 해결하기 위함이다. 칼슘이온을 제거하기 위하여 제올라이트를 개질하여 사용하였으며 결합 양이온 및 구조를 고려한 최적 제올라이트 선정, 칼슘이온 제거 성능 평가, 개질 용액의 종류 및 농도의 영향, K 공존 시 제거 선택도 평가에 대해 연구를 수행하였다. 5종의 제올라이트 중 13X 제올라이트의 칼슘 이온 제거 성능이 가장 우수함을 확인하였고 NaCl 대신 KCl을 개질 용액으로 사용하였을 때 칼슘이온 제거 성능이 증진되는 것을 확인할 수 있었다. 본 연구는 탄산화 공정의 문제 해결, 고농도의 KCl 회수 기술의 바탕이 될 것으로 판단된다.

The removal of calcium ions using zeolite to solve problems of the CaCO3 manufacturing process using cement kiln dust was investigated. To do so, a modified zeolite was employed and experiments were conducted to select the optimal zeolite type considered the binding cation and structure, evaluate the removal performance of calcium ions, the influence of the type and concentration of the modifying solution, and the removal selectivity when K coexists. Among five zeolites, 13X zeolite was found to have the best calcium ion removal performance, and it was confirmed that the removal performance was enhanced when KCl was used as a modifying solution instead of NaCl. This study is expected to be the basis for the solution of carbonation process and high concentration of KCl recovery technology.

키워드

참고문헌

  1. G. J. Hawkins, J. I. Bhatty, and A. T. O'Hare, Cement Kiln dust production, management and disposal, Portland Cement Association, R&D No. 2737, Skokie, Illinois, USA (2003).
  2. D. Kim and M. J. Kim, Mineral carbonation using industrial waste, J. Korea Soc. Waste. Manag., 32, 317-328 (2015). https://doi.org/10.9786/kswm.2015.32.4.317
  3. Ssangyong Cement Industrial Co., LTD., Recovery of potassium chloride from Cl by pass dust, Korea Patent 10-1561637 (2015).
  4. D. N. Huntzinger and T. D. Eatmon, A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies, J. Clean. Prod., 17, 668-675 (2009). https://doi.org/10.1016/j.jclepro.2008.04.007
  5. Korea Institute of Ceramic Engineering and Technology, Manufacturing method of potassium chloride using cement bypass dust, Korean Patent 10-1789701 (2017).
  6. S. M. Lee, Y. J. Kim, C. Y. Choi, and J. Y. Lee, Characteristics of $CO_2$ sequestration in indirect mineral carbonation (IMC) using cement kiln dust (CKD), J. Korean Soc. Urban Environ., 18, 303-310 (2018).
  7. M. H. Youn, K. T. Park, Y. H. Lee, S. P. Kang, S. M. Lee, S. S. Kim, Y. E. Kim, Y. N. Ko, S. K. Jeong, and W. H. Lee, Carbon dioxide sequestration process for the cement industry, J. $CO_2$ Util., 34, 325-334 (2019).
  8. K. Xeng and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen productionand applications, Prog. Energy Combust. Sci., 36, 307-326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
  9. S. K. Lee, J. I. Oh, and S. M. Yoon, Removal of calcium ion in industrial wastewater by a natural zeolite, J. Korean Soc. Environ. Eng., 6, 259-260 (2002).
  10. Y. J. Jung, Removal properties of aqueous ammonium ion with surface modified magnetic zeolite adsorbents, J. Wetl. Res., 21, 152-156 (2019). https://doi.org/10.17663/JWR.2019.21.2.152
  11. L. L. Ames, Cation sieve properties of the open zeolite, chabazite, mordenite, erionite and clinoptilolite, Am. Mineral., 46, 1120-1131 (1961).
  12. Betz Laboratories, Betz Handbook of Industrial Water Conditioning, 9th ed., 50, Betz, Trevose, Pennsylvania, USA (1991).
  13. Y. Xu, T. Nakajima, and A. Ohki, Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite, J. Hazard. Mater., 92, 275-287 (2002). https://doi.org/10.1016/S0304-3894(02)00020-1
  14. A. Abusafa and H. Yuucel, Removal of 137Cs from aqueous solutions using different cationic forms of a natural zeolite: Clinoptilolite., Sep. Purif. Technol., 28, 103-116 (2002). https://doi.org/10.1016/S1383-5866(02)00042-4
  15. K. H. Park and J. K. Suh, Polluted water treatment of dam and reservoir using natural Korean zeolite, J. Korean Soc. Ind. Appl., 8, 113-120 (2005).
  16. J. H. Koon and W. J. Kaufman, Ammonia removal from municipal waste waters by ion exchange, J. Water Pollut. Control Fed., 47, 448-495 (1975).
  17. L. Curkovic, S. Cerjan-stefanovic, and T. Filipan, Metal ion exchange by natural and modified zeolites, Wat. Res., 31, 1379-1382 (1997). https://doi.org/10.1016/S0043-1354(96)00411-3
  18. S. G. Lee, A Study of Development of High-performance Feed using $Ca^{2+}$ Exchanged Zeolite A, Master's Thesis, Andong National University, Gyeongsang, Korea (2013).
  19. K. Fu, Z. Li, Q. Xia, and T. Zhong, Change and improving of ammonium exchange capacity onto zeolite in seawater, 2011 2nd International Conference on Environmental Engineering and Applications, IPCBEE, 17, 226-231 (2011).
  20. W. Lutz, Zeolite Y: Synthesis, modification, and properties - A case revisited, Adv. Mater. Sci. Eng, 2014, 1-20 (2014).
  21. M. S. Park, A Study of Carrier Manufacturing for $NH_4{^+}$-N Ion Exchange using the Natural Zeolite, Master's Thesis, Kyonggi University, Gyeonggi, Korea (2009).
  22. B. G. Ahn, Removal of Concentrated Calcium Ion in Industrial Wastewater using Natural Zeolite, Master's Thesis, Chung Ang University, Seoul, Korea (2003).