DOI QR코드

DOI QR Code

Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics

스크린 프린팅 기반 저가형의 플렉서블 칼륨 이온 센서 제조 및 이의 전기화학적 특성

  • Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University) ;
  • Park, Hong Jun (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Yeong Kyun (Department of Chemical Engineering, Kangwon National University) ;
  • Cho, Hyeon-Sang (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 손선규 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 박홍준 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 김영균 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 조현상 (강원대학교(삼척캠퍼스) 화학공학과) ;
  • 최봉길 (강원대학교(삼척캠퍼스) 화학공학과)
  • Received : 2019.11.03
  • Accepted : 2019.11.20
  • Published : 2019.12.10

Abstract

A low-cost and flexible potassium ion (K+) sensor was fabricated through a screen-printed process. Uniform and conformal coating of conductive inks was verified by scanning electron microscopy and optical microscopy measurements. The K+-sensors showed a high sensitivity, fast response time, and low detection limit. The sensitivity of K+-sensor was similar to that of both mechanically normal and bent states. The K+-sensor exhibited a good reproducibility with no hysteresis effect and excellent long term stability. In addition, the K+-sensor showed an excellent selectivity for K+ concentrations in the presence of other interfering cation ions. Successful measurements of K+ concentrations in sports drink samples were demonstrated by comparing K+ concentration values from K+-sensor to those of using a commercial K+-meter.

본 연구에서는 스크린 프린팅 공정을 이용하여 저렴하고 유연한 칼륨 이온(K+) 센서를 제작하였다. 전도성 잉크의 균일한 코팅은 주사 전자 현미경 및 광학 현미경 측정에 의해 입증되었다. K+ 센서는 높은 감도, 빠른 응답 시간, 낮은 검출 한계를 보여주었다. 제조된 K+ 센서의 감도는 기계적으로 구부러진 상태에도 여전히 유지되었다. 히스테리시스 효과가 없는 우수한 반복성과 우수한 장기 안정성이 K+ 센서의 전기화학적 특성 분석에서 관찰되었다. 또한, K+ 센서는 다른 간섭 양이온이 존재하는 경우에도 정확하게 K+ 농도를 측정 할 수 있어 우수한 선택성을 증명하였다. 또한, 실제 스포츠 음료 샘플에서 K+ 농도의 성공적인 측정은 K+ 센서의 K+ 농도 값과 상용 K+ 미터를 비교하여 증명되었다.

Keywords

References

  1. J. H. Yoon, S. B. Hong, S. O. Yun, S. J. Lee, T. J. Lee, K. G. Lee, and B. G. Choi, High performance flexible pH sensor based on polyaniline nanopillar array electrode, J. Colloid Interface Sci., 490, 53-58 (2017). https://doi.org/10.1016/j.jcis.2016.11.033
  2. J. H. Yoon, K. H. Kim, N. H. Bae, G. S. Sim, Y. J. Oh, S. J. Lee, T. G. Lee, K. G. Lee, and B. G. Choi, Fabrication of newspaper-based potentiometric platforms for flexible and disposable ion sensors, J. Colloid Interface Sci., 508, 167-173 (2017). https://doi.org/10.1016/j.jcis.2017.08.036
  3. M. Cuartero and G. A. Crespo, All-solid-state potentiometric sensors: A new waver for in situ aquatic research, Curr. Opin. Electrochem., 10, 98-106 (2018). https://doi.org/10.1016/j.coelec.2018.04.004
  4. M. Parrilla, M. Cuartero, and G. A. Crespo, Wearable potentiometric ion sensor, TrAc Trends Anal. Chem., 110, 303-320 (2019). https://doi.org/10.1016/j.trac.2018.11.024
  5. M. Cuartero, M. Parrilla, and G. A. Crespo, Wearable potentiometric sensors for medical applications, Sensors (Basel), 19, 363 (2019). https://doi.org/10.3390/s19020363
  6. C. Jiang, Y. Yao, Y. Cai, and J. Ping, All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer, Sens. Actuator B, 283, 284-289 (2019). https://doi.org/10.1016/j.snb.2018.12.040
  7. J. Hu, X. U. Zou, A. Stein, and P. Buhlmann, Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact, Anal. Chem., 86, 7111-7118 (2014). https://doi.org/10.1021/ac501633r
  8. E. Jaworska, W. Lewandowski, J. Mieczkowski, K. Maksymiuk, and A. Michalska, Critical assessment of graphene as ion-to-electron transducer for all-solid-state potentiometric sensors, Talanta, 97, 414-419 (2012). https://doi.org/10.1016/j.talanta.2012.04.054
  9. R. Hernandez, J. Rju, J. Bobacka, C. Valles, P. Jimenez, A. M. Benito, W. K. Maser, and F. X. Rius, Reduced graphene oxide films as solid transducers in potentiometric all-solid-state ion-selective electrodes, J. Phys. Chem. C, 116, 22570-22578 (2012). https://doi.org/10.1021/jp306234u
  10. J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric ion sensors, Chem. Rev., 108, 329-351 (2008). https://doi.org/10.1021/cr068100w
  11. J. Hu, A. stein, and P. Buhlmann, Rational design of all-solid-state ion-selective electrodes and reference electrodes, Trends Anal. Chem., 76, 102-114 (2016). https://doi.org/10.1016/j.trac.2015.11.004
  12. A. Michalska, All-solid-state ion selective and all-solid-state reference electrodes, Electroanalysis, 24, 1253-1265 (2012). https://doi.org/10.1002/elan.201200059
  13. F. Tehrani, M. B. Gastelum, K. Sheth, A. Karajic, L. Yin, R. Kumar, F. Soto, J. Kim, J. Wang, S. Barton, M. Mueller, and J. Wang, Laser-Induced graphene composites for printed, stretchable, and wearable electronics, Adv. Mater. Technol., 4, 1900162 (2019). https://doi.org/10.1002/admt.201900162
  14. J. Bian, L. Zhou, X. Wan, C. Zhu, B. Yang, and Y. Huang, Laser Transfer, Printing, and assembly techniques for flexible electronics, Adv. Electron. Mater., 5, 21800900 (2019).
  15. K. Arapov, E. Rubingh, R. Abbel, J. Laven, G. de With, and H. Friedrich, Conductive screen printing inks by gelation of graphene dispersions, Adv. Funct. Mater., 26, 586-593 (2016). https://doi.org/10.1002/adfm.201504030
  16. W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, and L. F. Francis, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics, Adv. Mater., 27, 109-115 (2014). https://doi.org/10.1002/adma.201404133
  17. S. Bellani, E. Petroni, A. E. Del Rio Castillo, N. Curreli, B. M. Garcia, R. O. Nunez, M. Prato, and F. Bonaccorso, Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors, Adv. Funct. Mater., 29, 1807659 (2019). https://doi.org/10.1002/adfm.201807659
  18. H. J. Park, J. H. Yoon, K. G. Lee, and B. G. Choi, Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays, Nano Converg., 6, 9-15 (2019). https://doi.org/10.1186/s40580-019-0179-0
  19. Z. Chu, J. Peng, and W. Jin, Advanced nanomaterial inks for screen-printed chemical sensors, Sens. Actuator B, 243, 919-926 (2017). https://doi.org/10.1016/j.snb.2016.12.022
  20. F. Bonaccorso, A. Bartolotta, J. N. Coleman, and C. Backes, 2D-crystal-based functional inks, Adv. Mater., 28, 6136-6166 (2016). https://doi.org/10.1002/adma.201506410
  21. G. Hu, J. Kang, L. W. Ng, X. Zhu, R. C. T. Howe, C. G. Jones, M. C. Hersam, and T. Hasan, Functional inks and printing of two-dimensional materials, Chem. Soc. Rev., 47. 3265-3300 (2018). https://doi.org/10.1039/C8CS00084K
  22. C. Macca, The current usage of selectivity coefficients for the characterization of ion-selective electrodes. a critical survey of the 2000/2001 literature, Electroanalysis, 15, 997-1010 (2003). https://doi.org/10.1002/elan.200390129
  23. Y. Umezawa, P. Buhlmann, K. Umezawa, K. Tohda, and S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes, Pure Appl. Chem., 72, 1851-2082 (2000). https://doi.org/10.1351/pac200072101851