DOI QR코드

DOI QR Code

Effect of La in Partial Oxidation of Methane to Hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) Catalysts

M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 수소 제조를 위한 메탄의 부분산화반응에서 La의 효과

  • Seo, Ho Joon (Department of Chemical and Biomolecular Engineering, Chonnam National University)
  • 서호준 (전남대학교 화공생명공학과)
  • Received : 2019.10.28
  • Accepted : 2019.11.18
  • Published : 2019.12.10

Abstract

The catalytic yields of POM to hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) were investigated using a fixed bed flow reactor under atmosphere. The crystal phase behavior of reduced La(1)-Ni(5)/AlCeO3 catalysts before and after the reaction were studied via XRD analysis. FESEM and EDS analyses were further performed to show the uniformed distribution of La, Ni, and Ce metal particles on the catalyst surface. XPS results showed O2-, O22- species and metal ions such as Ce3+, Ce4+, La3+ and Ni2+ etc. were on the catalyst surface. When 1 wt% of La was added to Ni(5)/AlCeO3 catalyst, Ni2p3/2 and Ce3d5/2 increased 52.7 and 6.3%, respectively. The yield of hydrogen on the La(1)-Ni(5)/AlCeO3 catalyst was 89.1%, which was much better than that of M(1)-Ni(5)/AlCeO3 (M = Ce, Y). As Ce4+ ions of CeO2 produced by the reaction of AlCeO3 with oxygen were substitute to La3+, it made oxygen vacancies in the lattice and further improved the hydrogen yield by increasing the dispersion of Ni atoms with strong metal-support interaction (SMSI) effect.

고정층 상압 유통식 반응기를 사용하여 M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 메탄의 부분 산화 반응을 수행하여 수소의 수율을 조사하였다. XRD 분석으로 반응 전과 반응 후의 환원된 La(1)-Ni(5)/AlCeO3 촉매의 결정상 특성피크를 조사하였고 FESEM과 EDS 분석으로 La, Ni, Ce 금속 입자가 촉매 표면상에 균일하게 분포하고 있음을 조사하였다. XPS 분석으로 촉매 표면상에 O2-, O22-의 산소와 Ce3+, Ce4+, La3+, Ni2+ 등의 이온이 존재함을 알 수 있었고, Ni(5)/AlCeO3 촉매에 1 wt%의 La를 첨가하면 Ni2p3/2과 Ce3d5/2의 원자가 각각 52.7과 6.3%로 증가하였다. La(1)-Ni(5)/AlCeO3 촉매상에서 수소의 수율은 89.1%이었으며, M(1)-Ni(5)/AlCeO3 (M = Ce, Y)보다 매우 우수하였다. AlCeO3이 산소와 반응하여 만들어진 CeO2의 Ce4+ 이온이 La3+로 치환됨으로서 격자에 산소 빈자리를 만들고 strong metal-support interaction (SMSI) 효과로 Ni 원자의 분산을 증가시켜 수소 수율를 향상시켰다.

Keywords

References

  1. H. J. Seo, U. I. Kang, and O. Y. Kwon, Characterization of Pd impregnated on oxidation of methane to hydrogen, J. Ind. Eng. Chem., 20, 1332-1337 (2014). https://doi.org/10.1016/j.jiec.2013.07.014
  2. R. Yang, C. Xing, C. Lv, L. Shi, and N. Tsubaki, Promotional effect of $La_2O_3$ and $CeO_2$ on $Ni/{\gamma}-Al_2O_3$ catalysts for $CO_2$ reforming of $CH_4$, Appl. Catal. A, 385, 92-100 (2010). https://doi.org/10.1016/j.apcata.2010.06.050
  3. W.-P. Dow, Y.-P. Wang, and T.-J. Huang, Yttria-stabilized zirconia supported copper oxide catalyst. 1. Effect of oxigen vacancy of support on copper oxide reduction, J. Catal., 160, 155-170 (1996). https://doi.org/10.1006/jcat.1996.0135
  4. T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi, S. Matsuura, and M. Sato, Ehanced oxigen storage capacity of cerium oxides in $CeO_2/La_2O_3/Al_2O_3$ containing precious metals, J. Phys. Chem., 94, 6464-6467 (1990). https://doi.org/10.1021/j100379a056
  5. X. Bai, S. Wang, T. Sun, and S. Wang, The sintering of $Ni/Al_2O_3$ methanation catalyst for substitute natural gas production, Reac. Kinet. Mech. Catal., 112, 437-451 (2014). https://doi.org/10.1007/s11144-014-0700-8
  6. H. Ma, L. Zeng, H. Tian, D. Li, X. Wang, X. Li, and J. Gong, Efficiency hydrogen production from ethanol steam reforming over La-modified ordered mesoporous Ni-based catalysts, Appl. Catal. B, 181, 321-331 (2016). https://doi.org/10.1016/j.apcatb.2015.08.019
  7. Ch. Anjaneyulu, S. N. Kumar, V. V. Kumar, G. Naresh, S. K. Bhargava, K. V. R. Chary, and A. Venugopal, Influence of La on reduction behaviour and Ni metal surface area of Ni-$Al_2O_3$$ catalysts for $CO_x$ free $H_2$ by catalytic decomposition of methane, Int. J. Hydrogen Energy, 40, 3633-3641 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.072
  8. C. Alvarez-Galvan, H. Falcs, V. Cascos, L. Troncoso, S. Perez-Ferrera, M. Capel-Sanchez, J. M. Campos-Martin, J. A. Alonso, and J. L. G. Fierro, Cermets Ni/($Ce_{0.9}Ln_{0.1}O_{1.95}$)(Ln = Gd, La, Nd and Sm) solution combustion method as catalysts for hydrogen production by partial oxidation of methane, Int. J. Hydrogen Energy, 43, 16834-16845 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.025
  9. S. Damyanova, B. Pawelec, R. Palcheva, Y. Karakirova, M. C. C. Sanchez, G. Tyuliev, E. Gaigneaux, and J. L. G. Fierro, Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production, Appl. Catal. B, 225, 340-353 (2017).
  10. N. D. Charisiou, G. I. Siakavelas, B. Dou, V. Sebastian, S. J. Hinder, M. A. Baker, K. Polychronopoulou, and M. A. Goula, Nickel supported on $AlCeO_3$ as a highly selective and stable catalyst for hydrogen production via the glycerol steam reforming reaction, Catalysts (MDPI), 9(5), 411-432 (2019). https://doi.org/10.3390/catal9050411
  11. G. Pantalo, V. L. Parola, F. Deganello, R. K. Singha, R. Bal, and A. M. Venezia, $Ni/CeO_2$ cataltsts for methane partial oxidation: Synthesis driven structual and catalytic effects, Appl. Catal. B, 189, 233-241 (2016). https://doi.org/10.1016/j.apcatb.2016.02.064