DOI QR코드

DOI QR Code

Evaluation of Long-Term Seasonal Predictability of Heatwave over South Korea Using PNU CGCM-WRF Chain

PNU CGCM-WRF Chain을 이용한 남한 지역 폭염 장기 계절 예측성 평가

  • Kim, Young-Hyun (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Eung-Sup (Division of Earth Environmental System, Pusan National University) ;
  • Choi, Myeong-Ju (Division of Earth Environmental System, Pusan National University) ;
  • Shim, Kyo-Moon (National Academy of Agricultural Science, RDA) ;
  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University)
  • 김영현 (부산대학교 지구환경시스템학부) ;
  • 김응섭 (부산대학교 지구환경시스템학부) ;
  • 최명주 (부산대학교 지구환경시스템학부) ;
  • 심교문 (농촌진흥청 국립농업과학원) ;
  • 안중배 (부산대학교 지구환경시스템학부)
  • Received : 2019.09.05
  • Accepted : 2019.12.19
  • Published : 2019.12.31

Abstract

This study evaluates the long-term seasonal predictability of summer (June, July and August) heatwaves over South Korea using 30-year (1989~2018) Hindcast data of the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. Heatwave indices such as Number of Heatwave days (HWD), Heatwave Intensity (HWI) and Heatwave Warning (HWW) are used to explore the long-term seasonal predictability of heatwaves. The prediction skills for HWD, HWI, and HWW are evaluated in terms of the Temporal Correlation Coefficient (TCC), Root Mean Square Error (RMSE) and Skill Scores such as Heidke Skill Score (HSS) and Hit Rate (HR). The spatial distributions of daily maximum temperature simulated by WRF are similar overall to those simulated by NCEP-R2 and PNU CGCM. The WRF tends to underestimate the daily maximum temperature than observation because the lateral boundary condition of WRF is PNU CGCM. According to TCC, RMSE and Skill Score, the predictability of daily maximum temperature is higher in the predictions that start from the February and April initial condition. However, the PNU CGCM-WRF chain tends to overestimate HWD, HWI and HWW compared to observations. The TCCs for heatwave indices range from 0.02 to 0.31. The RMSE, HR and HSS values are in the range of 7.73 to 8.73, 0.01 to 0.09 and 0.34 to 0.39, respectively. In general, the prediction skill of the PNU CGCM-WRF chain for heatwave indices is highest in the predictions that start from the February and April initial condition and is lower in the predictions that start from January and March. According to TCC, RMSE and Skill Score, the predictability is more influenced by lead time than by the effects of topography and/or terrain feature because both HSS and HR varies in different leads over the whole region of South Korea.

Keywords

References

  1. Ahn, J.-B., and J. L. Lee, 2015: Comparative study on the seasonal predictability dependency of boreal winter 2 m temperature and sea surface temperature on CGCM initial conditions. Atmosphere, 25, 353-366, doi:10.14191/Atmos.2015.25.2.353 (in Korean with English abstract).
  2. Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018a: Predictability of temperature over South Korea in PNU CGCM and WRF hindcast. Atmosphere, 28, 479-490, doi:10.14191/Atmos.2018.28.4.479 (in Korean with English abstract).
  3. Ahn, J.-B., J. Lee, and S. Jo, 2018b: Evaluation of PNU CGCM ensemble forecast system for boreal winter temperature over South Korea. Atmosphere, 28, 509-520, doi:10.14191/Atmos.2018.28.4.509 (in Korean with English abstract).
  4. Bonan, G. B., 1998: The land surface climatology of the NCAR Land Surface Model coupled to the NCAR Community Climate Model. J. Climate, 11, 1307-1326. https://doi.org/10.1175/1520-0442(1998)011<1307:TLSCOT>2.0.CO;2
  5. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  6. Colman, A., and M. Davey, 1999: Prediction of summer temperature, rainfall and pressure in Europe from preceding winter North Atlantic ocean temperature. Int. J. Climatol., 19, 513-536, doi:10.1002/(SICI)1097-0088(199904)19:5<513::AID-JOC370>3.0.CO;2-D.
  7. Della-Marta, P. M., J. Luterbacher, H. von Weissenfluh, E. Xoplaki, M. Brunet, and H. Wanner, 2007: Summer heat waves over Western Europe 1880-2003, their relationship to large-scale forcings and predictability. Clim. Dyn., 29, 251-275, doi:10.1007/s00382-007-0233-1.
  8. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
  9. Hajat, S., B. Armstrong, M. Baccini, A. Biggeri, L. Bisanti, A. Russo, A. Paldy, B. Menne, and T. Kosatsky, 2006: Impact of high temperatures on mortality: Is there an added heat wave effect?. Epidemiology, 17, 632-638, doi:10.1097/01.ede.0000239688.70829.63.
  10. Hong, S.-Y., and M. Kanamitsu, 2014: Dynamical downscaling: Fundamental issues from an NWP point of view and recommendations. Asia-Pac. J. Atmos. Sci., 50, 83-104, doi:10.1007/s13143-014-0029-2.
  11. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
  12. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
  13. Hunke, E. C., and J. K. Dukowicz, 1997: An Elastic-Viscous-Plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849-1867. https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2
  14. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on multi-RCM ensemble projections. J. Geophys. Res. Atmos., 122, 11444-11461, doi:10.1002/2017JD026731.
  15. IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
  16. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  17. Katsafados, P., A. Papadopoulos, G. Varlas, E. Papadopoulou, and E. Mavromatidis, 2014: Seasonal predictability of the 2010 Russian heat wave. Nat. hazards Earth Syst. Sci., 14, 1531-1542, doi:10.5194/nhess14-1531-2014.
  18. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note, NCAR/TN-420+STR, 152 pp.
  19. Kim, H. J., S. M. Oh, and I. U. Chung, 2018: An empirical model approach for seasonal prediction of summer temperature in South Korea. J. Climate Res., 13, 17-35, doi:10.14383/cri.2018.13.1.17 (in Korean with English abstract).
  20. Kim, J.-A., K. R. Kim, C. C. Lee, S. C. Sheridan, L. S. Kalstein, and B.-J. Kim, 2016: Analysis of occurrence distribution and synoptic pattern of future heat waves in Korea. J. Climate Res., 11, 15-27, doi:10.14383/cri.2016.11.1.15 (in Korean with English abstract).
  21. KMA, 2019: Annual report for 2018 extreme climate. Korea Meteorological Administration, 198 pp (in Korean).
  22. Kosaka, Y., J. S. Chowdary, S.-P. Xie, Y.-M. Min, and J.-Y. Lee, 2012: Limitations of seasonal predictability for summer climate over East Asia and the northwestern Pacific, J. Climate, 25, 7574-7589, doi:10.1175/JCLID-12-00009.1.
  23. Kunkel, K. E., X.-Z. Liang, and J. Zhu, 2010: Regional climate model projections and uncertainties of U.S. summer heat waves. J. Climate, 23, 4447-4458, doi: 10.1175/2010JCLI3349.1.
  24. Lau, N.-C., and M. J. Nath, 2014: Model simulation and projection of European heat waves in present-day and future climates. J. Climate, 27, 3713-3730, doi:10.1175/JCLI-D-13-00284.1.
  25. Lee, W.-S., and M.-I. Lee, 2016: Interannual variability of heat waves in South Korea and their connection with large-scale atmospheric circulation patterns. Int. J. Climatol., 36, 4815-4830, doi:10.1002/joc.4671.
  26. Meehl, G. A., and W. M. Washington, 1995: Cloud albedo feedback and the super greenhouse effect in a global coupled GCM. Climate Dyn., 11, 399-411, doi:10.1007/BF00209514.
  27. Meehl, G. A., and C. Tebaldi, 2004: MoreiIntense, more frequent, and longer lasting heat waves in the 21st century, Science, 305, 994-997, doi:10.1126/science.1098704.
  28. Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.
  29. Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, USA 08542, 708 pp.
  30. Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857-861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
  31. Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. I. Seneviratne, 2012: Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat. Clim. Change, 2, 736-741, doi:10.1038/nclimate1536.
  32. Ratnam, J. V., T. Doi, and S. K. Behera, 2017: Dynamical downscaling of SINTEX-F2v CGCM seasonal retrospective austral summer forecasts over Australia. J. Climate, 30, 3219-3235, doi:10.1175/JCLI-D-16-0585.1.
  33. Russo, S., and Coauthors, 2014: Magnitude of extreme heat waves in present climate and their projection in a warming world. J. Geophys. Res. Atmos., 119, 12500-12512. https://doi.org/10.1002/2014JD022098
  34. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note, NCAR/TN475+STR, 125 pp.
  35. Sun, J., and J.-B. Ahn, 2011: A GCM-based forecasting model for the landfall of tropical cyclones in China. Adv. Atmos. Sci., 28, 1049-1055, doi:10.1007/s00376-011-0122-8.
  36. Sun, J., and J.-B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342-1353, doi:10.1002/joc.4060.
  37. Teng, H., G. Branstator, H. Wang, G. A. Meehl, and W. M. Washington, 2013: Probability of US heat waves affected by a subseasonal planetary wave pattern. Nature Geosci., 6, 1056-1061, doi:10.1038/ngeo1988.
  38. Vautard, R., and Coauthors, 2013: The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dyn., 41, 2555-2575, doi:10.1007/s00382-013-1714-z.
  39. Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences. Academic Press, 467 pp.
  40. Yin, H., and Y. Sun, 2018: Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Adv. Climate Change Res., 9, 218-226, doi:10.1016/j.accre.2019.01.001.
  41. Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Change, 2, 851-870, doi:10.1002/wcc.147.