DOI QR코드

DOI QR Code

A Study on the Design of a Beta Ray Sensor for True Random Number Generators

진성난수 생성기를 위한 베타선 센서 설계에 관한 연구

  • Kim, Young-Hee (Department of Electronic Engineering, Changwon National University) ;
  • Jin, HongZhou (Department of Electronic Engineering, Changwon National University) ;
  • Park, Kyunghwan (Electronics and Telecommunications Research Institute) ;
  • Kim, Jongbum (Korea Atomic Energy Research Institute) ;
  • Ha, Pan-Bong (Department of Electronic Engineering, Changwon National University)
  • Received : 2019.11.25
  • Accepted : 2019.12.10
  • Published : 2019.12.31

Abstract

In this paper, we designed a beta ray sensor for a true random number generator. Instead of biasing the gate of the PMOS feedback transistor to a DC voltage, the current flowing through the PMOS feedback transistor is mirrored through a current bias circuit designed to be insensitive to PVT fluctuations, thereby minimizing fluctuations in the signal voltage of the CSA. In addition, by using the constant current supplied by the BGR (Bandgap Reference) circuit, the signal voltage is charged to the VCOM voltage level, thereby reducing the change in charge time to enable high-speed sensing. The beta ray sensor designed with 0.18㎛ CMOS process shows that the minimum signal voltage and maximum signal voltage of the CSA circuit which are resulted from corner simulation are 205mV and 303mV, respectively. and the minimum and maximum widths of the pulses generated by comparing the output signal through the pulse shaper with the threshold voltage (VTHR) voltage of the comparator, were 0.592㎲ and 1.247㎲, respectively. resulting in high-speed detection of 100kHz. Thus, it is designed to count up to 100 kilo pulses per second.

본 논문에서는 진성난수 생성기를 위한 베타선 센서를 설계하였다. PMOS 피드백 트랜지스터의 게이트를 DC 전압으로 바이어스하는 대신 PMOS 피드백 트랜지스터에 흐르는 전류가 PVT 변동에 둔감하도록 설계된 전류 바이어스 회로를 mirroring하게 흐르도록 하므로 CSA의 signal voltage의 변동을 최소화하였다. 그리고 BGR (Bandgap Reference) 회로를 이용하여 공급된 정전류를 이용하여 신호 전압을 VCOM 전압 레벨까지 충전하므로 충전 시간의 변동을 줄여 고속 감지가 가능하도록 하였다. 0.18㎛ CMOS 공정으로 설계된 베타선 센서는 corner별 모의실험 결과 CSA 회로의 최소 신호전압과 최대 신호전압은 각각 205mV와 303mV이고, pulse shaper를 거친 출력 신호를 비교기의 VTHR (Threshold Voltage) 전압과 비교해서 발생된 펄스의 최소와 최대 폭은 각각 0.592㎲와 1.247㎲로 100kHz의 고속 감지가 가능한 결과가 나왔으며, 최대 100Kpulse/sec로 계수할 수 있도록 설계하였다.

Keywords

References

  1. M. Herrero-Collantes et al., "Quantum Random Number Generators," Reviews of Modern Physics, Feb. 2017.
  2. K. H. Park et al., "Apparatus and Method for Generating Quantum Random Number," Korean Patent applied no. 10-2018-0054533, May 2018.
  3. John Gribbin, Q is for Quantum, ISBN-13: 978-0684855783, pp. 291-292, 1998.
  4. Anil and Ananthaswamy. How to Turn a Quantum Computer into the Ultimate Randomness Generator. Quanta Magazine. June 19, 2019.
  5. Glen F. Knoll, Radiation Detection and Measurement, Third Edition, John Wiley & Sons Inc., 2000.
  6. W. R. Wampler, B. L. Doyle, "Low-Energy Beta Spectroscopy Using PIN Diodes to Monitor Tritium Surface Contamination", Nuclear Instruments and Methods in Physics Research, A349, pp. 473-480, 1994. https://doi.org/10.1016/0168-9002(94)91213-0
  7. Mihai Culcer, Mariana Iliescu, Marian Curuia, Adrian Enache, Ioan Stefanescu, Catalin Ducu, Viorel Malinovschi, "Tritium Contaminated Surface Monitoring with a Solid-State Device," Proceedings of the International Conference Nuclear Energy for New Europe, 713.1-6, Sep. 2004.
  8. P. Grybos et al., "Measurements of Matching and High Count Rate Performance of Multichannel ASIC for Digital X-Ray Imaging Systems," IEEE Transactions on Nuclear Science, vol. 54, no. 4, Aug. 2007.
  9. S. B. Baek et al., "A Design of Single Pixel Photon Counter for Digital X-ray Image Sensor," Journal of the Korea Institute of Information and Communication Engineering vol. 11, no. 2, Feb. 2007.
  10. Solid State Division Technical Information, "Characteristics and use of Charge amplifier," HAMAMATSU, Oct. 2001.