
디지털산업정보학회 논문지 제15권 제4호-2019년 12월

http://dx.doi.org/10.17662/ksdim.2019.15.4.093

디지털산업정보학회 논문지 93

Ⅰ. INTRODUCTION
1)

The research on software-defined radio (SDR)

technology has been active for the keen need of

flexible communication system. Compared to a

complete hardware based communication system

where the parameters for each functional block has

been fixed, a communication system based on SDR

* 한양대학교 전자컴퓨터통신공학과 석사과정

** 한양대학교 전자컴퓨터통신공학과 박사과정

*** 한양대학교 전자컴퓨터통신공학과 교수

technology can comply with various protocols and

new encoding/decoding techniques by software

implementation[1].

IEEE 802.11ac is the latest standard on the market,

which was ratified by the IEEE as a way to take

advantage of both technological advancements and

unused capabilities for wireless local access network

(WLAN) technology. However, the features of

IEEE802.11ac including higher data rate, higher

capacity, lower latency and efficient power usage

make the implementation much more challenging[2].

Design and Implementation of Software Defined Radio

Based IEEE 802.11ac Encoder Using Multicore DSP

Zhang Zhongfeng*·Ahn Heungseop**·Choi Seungwon***

멀티코어 DSP를 사용한 SDR 기반 IEEE 802.11ac 인코더의 설계 및 구현
장 중 봉ᆞ안 흥 섭ᆞ최 승 원

<Abstract>

This paper presents a software design and implementation of software-defined radio based
IEEE 802.11ac encoder using Texas Instruments TMS320C6670 digital signal processor (DSP)
platform. In this paper, the implemented encoder has the capability of generating all the
signals consisting of preamble field and data field under different modulation & coding
scheme in the IEEE 802.11ac standard. Moreover, the flexibility in choosing different rate,
bandwidth, or mode can also be achieved by software reconfiguration using the DSP. As a
result, by utilizing the computing power provided by multi-cores as well as the FFT
coprocessors in the DSP, the required maximum throughput 78Mbps can be fully reached
within 4 μs for each OFDM symbol in the case of 20MHz bandwidth of IEEE 802.11ac.

Key Words : Software-Defined Radio (SDR), IEEE 802.11ac, Digital Signal Processor (DSP), Encoder,

Implementation

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

94 제15권 제4호

By applying the SDR technology to IEEE

802.11ac, not only are the radio parameters such as

bandwidth, modulation scheme, coding rate, etc be

reconfigurable via software, it also becomes easy to

implement new IEEE 802.11 protocols in the future

based on the implemented one due to the flexibility

and availability of the SDR technology.

The implementation of the SDR technology can

be achieved by using a field programmable gate

array (FPGA) or a digital signal processor (DSP).

FPGAs are semiconductor devices that can be

reprogrammed to desired application or

functionality requirements after manufacturing

while DSPs are specialized microprocessors with its

architecture optimized to build real-time digital

processing systems. In the aspect of operability,

FPGAs are programmed in Hardware Descriptive

Language (HDL) which requires specialty and a fair

amount of skills whereas DSPs are programmed in

C language, which is well known and easy to be

approached by programmers. In the aspect of

project development period, programmers who use

FPGAs have to manage to design and optimize the

logic circuits for any certain functionalities whereas

programmers who use DSPs can utilize the various

optimized co-processors, different types of memory,

and advanced data transfer systems which are

already packaged inside DSPs. Thus, using DSPs to

implemente can significantly reduce the

implementation time with flexibilities and

functionalities offered by DSPs. Lastly, in the aspect

of cost, DSPs also are much more financially

advantageous than FPGAs; therefore, they are more

preferable in the environment where a budget plays

an important rule.

In this paper, we are primarily interested in

applying the SDR technology to IEEE 802.11ac

encoder implementation using the TMS320C6670

DSP[3]. There are several related works for

implementing IEEE 802.11 protocols using SDR

platforms such as CPU and DSP[4, 5, 6]. However,

we addressed that none of the related work has

implemented IEEE 802.11ac encoder using

multi-core DSPs. In this paper, IEEE 802.11ac

encoder has been firstly implemented using

multi-core DSPs. To meet real-time constraint of

IEEE 802.11ac protocol, we utilized three cores and

hardware accelerator (FFT coprocessor) in the

TMS320C6670 to further increase the performance of

the encoding process.

This paper is organized as follows. Section II

introduces the basics of TMS320C6670 DSP which is

used for implementation of the encoder. Section III

describes IEEE 802.11ac briefly. Section IV explains

the software implementation details of IEEE

802.11ac encoder using TMS320C6670 DSP. Section

V presents and analyzes the numerical result of the

system. Section VI presents a conclusion.

Ⅱ. TMS320C6670 DSP

The TMS320C6670 is well suited for

high-performance programmable applications. With

a multi-core architecture combined with

coprocessors, the TMS320C6670 can deliver the

performance needed with the best power efficiency.

In addition, with both fixed-point and floating-point

processors on the same core, the TMS320C6670 is

able to perform up to four times faster than a

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

디지털산업정보학회 논문지 95

fixed-point implementation alone.

The subsections in below are brief introductions

of the important parts of the DSP that have been

used in the implementation of the IEEE 802.11ac

encoder in this paper.

2.1 Memory

The TMS320C6670 includes a large amount of

on-chip memory organized as a two-level memory

system. It helps minimize latency and increase

system performance. The Level l (L1) program and

data memories on the TMS320C6670 device are 32

KB each per core. The Level 2 (L2) memory is

shared between program and data space, and 1024

KB per core. There is also 2048 KB of multi-core

shared memory (MSM) that are accessible across all

the cores on the TMS320C6670. Due to the limited

size of the L2, for the implementation of IEEE

802.11ac encoder in this paper, it is preferred to

store the lookup table, which contains the

pre-calculated scrambling sequence and interleaving

index, in the MSM.

2.2 Fast Fourier Transform Coprocessor (FFTC)

The FFTC module in the TMS320C6670 is

comprised of three coprocessors, which are used to

perform FFT/IFFT. The FFTC has been designed to

be compatible with various OFDM based wireless

standards which include IEEE 802.11ac. Using the

FFTC for FFT/IFFT operation can free CPU cycles

for other tasks.

The FFTC can process 2048 point FFT/IFFT

within 4.8μs[7]. With the significant acceleration

provided by the FFTC, the IFFT computation, which

is required for the encoding of OFDM-based IEEE

802.11ac waveform, can consume much less cycles.

2.3 Inter-Process Communication (IPC)

The IPC is a communication mechanism in the

TMS320C6670 that is designed to allow

communication between processors in a

multi-processor environment and communication

between processor and peripheral. The IPC can be

used for data sharing between processes running on

a single core or different cores to speed the

execution of an application[8].

For the implementation in this paper, Notify

module of the IPC is used to achieve the

synchronization among cores (Core0 and Core1).

Ⅲ. IEEE 802.11ac

In early 2014, 802.11ac was approved by the

IEEE, and 802.11ac is an evolution of the previous

802.11n standard. A key change in IEEE 802.11ac is

the provision of greater bandwidth, which is

required by the increasing use of demanding

applications such as video streaming, database

searches, and file transfers.

As shown in Table I, IEEE 802.11ac supports 9

different modulation coding schemes (MCS) for

20MHz bandwidth, and each of the MCS indicates

a combination of modulation type, coding rate, and

maximum throughput.

The format of IEEE 802.11ac in PHY layer is

shown in Figure 1. It consists of preamble field and

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

96 제15권 제4호

data field. In the legacy preamble field, Legacy

Short Training Field (L-STF) and Legacy Long

Training Field (L-LTF) are used to conduct

synchronization, channel estimation and

compensation as well as power control. Control

information such as bandwidth, data rate,

beamforming configuration, length of guard interval

etc. is contained in Legacy Signal (L-SIG). Apart

from the legacy preamble field, IEEE 802.11ac has

introduced a new preamble field called Very High

Throughput (VHT) preamble field, which contains

new control information related to Multi-user

Multiple Input Multiple Output (MU-MIMO)[9].

Data field, which carries the data passed down

from upper layer, 16-bit service field and padding

bits, is at the end of the VHT format.

Ⅳ. SOFTWARE IMPLEMENTATION

4.1 Preamble Field and Data Field Encoding

The preamble field has the legacy preamble and

VHT preamble field. Since multi-antenna techniques

such as beamforming and MIMO are not used in

the implementation of the encoder, VHT-SIG-B field

for supporting multi-antenna techniques is not

implemented. Apart from VHT-SIG-B field, all other

fields are implemented in compliance with IEEE

802.11ac specifications[10].

For the data field, owing to the software

flexibility provided by the DSP, the MCS can be

determined dynamically by software according to

various requirements.

In Figure 2, the whole encoding process is shown

under MCS 8, which corresponds to 3/4 coding

TABLE 1. MODULATION CODING SCHEME FOR 20MHz

BANDWIDTH

MCS Index Modulation Type Coding Rate Throughput (Mbps)

0 BPSK 1/2 6.5

1 QPSK 1/2 13

2 QPSK 3/4 19.5

3 16-QAM 1/2 26

4 16-QAM 3/4 39

5 64-QAM 2/3 52

6 64-QAM 3/4 58.5

7 64-QAM 5/6 65

8 256-QAM 3/4 78

Fig. 1 Format of Very High Throughput (VHT)

Fig. 2 Encoding Process

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

디지털산업정보학회 논문지 97

rate, 256 QAM modulation, and 78Mbps maximum

throughput. The coprocessor FFTC in the C6670

DSP is used to execute 64 point IFFT for both

preamble part and data part in the end.

4.2 Utilization of Multi-Cores

One of the challenges of implementing 802.11ac

using multicore DSP is how to accurately acquire

the synchronization among multicores. If the cores

are not synchronized properly, the data transfer

would result in errors, and eventually lead to the

failure of the whole system.

In this paper, in order to meet the required

throughput of IEEE 802.11ac, Core0, Core1, and

Core2 are used to encode the data. For

synchronizing the cores, instead of using polling

method, we used the provided IPC module of the

DSP.

In IPC module, there are various functions

provided to achieve the communications across

cores, such as MessageQ, Notify, etc. However,

Notify is more preferable because it is relatively

easy to set up, and although the amount of data it

allows to transfer at one time is much less than

MessageQ, the heavily loaded communication

across cores is not needed in this implementation.

The objective of the communication across cores is

to send notifications to the other cores indicating

that they can start fetching the data from the shard

memory and start processing it.

4.3 Optimization

Another challenge of implementing 802.11ac

using multicore DSP is how to optimize the system

to the extent where one OFDM symbol can be

processed within 4μs. There are certain optimization

techniques are applied in this implementation.

Firstly, the optimization level of the compiler is

set to the highest level, which is level 3[11]. The

compiler can help reduce a massive amount of

execution time, however, the downside to that is

that the higher optimization level is, the more time

it consumes to compile. Sometimes, if the size of

the project is considerably large, it may slow down

the process of the implementation. Nevertheless, the

significant optimization level that the compiler

provides can not be neglected.

Secondly, because the scrambling and

interleaving processing in IEEE 802.11ac encoder

takes up the majority of the total processing

time;therefore, instead of calculating the scrambling

sequence and interleaving index for each frame in

real time, it is better to calculate them beforehand

and put them into a lookup table in terms of

reducing computing power and execution time The

advantage of using lookup table is evident;

however, a lookup table might take up considerably

large memory especially when the bandwidth is

increased to accommodate more users. In that case,

it can be stored in the external memory on the

board, but the speed of data fetching would be

twice slower than it is stored in the shared

memory. To speed up the data fetching from

external memory, we can use Enhanced Direct Data

Access 3 (EDMA3)[12] to let the EDMA controller

to handle the data transfer without the cores

consuming cycles to do it.

Thirdly, since the IFFT is FPGA hardware

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

98 제15권 제4호

specifically made in the TMS320C6670 DSP for

speeding up IFFT, we managed to initialized two

instances of IFFT out of four to help reduce the

execution time spent on IFFT, and each instance is

run by one core. Although all the four instances of

FFTC could be used together to further maximize

the level of optimization on IFFT, it is unnecessary

to do so because the setup and management of the

instances require a fair amount of resources of the

DSP such as descriptors, interrupts, memory, etc. In

this implementation, using two instances has

successfully helped us achieve the desired

throughput with acceptable cost.

4.4 DSP Implementation Diagram

The implementation details of IEEE 802.11ac

encoder using multicore DSP are shown in Figure

3. From the figure, we can see that in the initial

stage of the system, Core0, Core1, and Core2 are

being polled continuously until the system

initialization, and FFTC setup are complete. Once

the polling is finished, the system moves on to the

next stage, which is iterative. In this stage, Core2

sends the encoded data to the destination every 4μs.

When Core2 is finished the data transfer to the

other device, it executes Notify_sendEvent() to send

notifications to both Core0 and Core1. After getting

notified, the callback function is triggered to execute

Semaphore_post() to help Core0 and Core1 escape

from the state of being hung on the semaphore.

After that, Core 0 starts processing preamble filed

of the frame while Core 1 starts processing data

filed of the frame. When the processing of one

frame is complete, Core0 and Core1 go back to the

state of being hung up on semaphore waiting for

the callback function to be triggered again in the

next iteration.

Ⅴ. IMPLEMENTATION RESULT AND
ANALYSIS

The parameters of the encoder is shown in Table

2. The validation of the output of the implemented

system has been confirmed by comparing the

output of the implemented encoder with the IEEE

802.11ac encoded signal provided by MATLAB

Fig. 3 DSP Implementation diagram of IEEE 802.11ac encoder

TABLE 2. SYSTEM PARAMETERS

Parameter Value

Center Frequency (GHz) 5.0

Bandwidth (MHz) 20

Number of OFDM Symbol 37

MCS 8

IFFT Point 64

Guard Interval (μs) 0.8

Symbol Period (μs) 4

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

디지털산업정보학회 논문지 99

WLAN toolbox[13].

As shown in Table 3, the total encoding time of

IEEE 802.11ac is 135μs for 37 OFDM symbols, and

3.65μs for each OFDM symbol, which is less than

the required processing time, i.e., 4μs. The

throughput of the encoder reaches 78Mbps, which

is the maximum throughput for MCS 8.

Compared to other functional blocks, the channel

encoding, i.e., BCC (Binary Convolutional Codes)

encoding, consumes the most processing time . For

the encoding of the BCC, the current output bit

should be relevant to the previous output bits by

having them convoluted. Because of that, unlike the

other parts of encoding process, such as scrambling,

interleaving, mapping, etc. where the input data is

divided into groups, and each group is processed

by different core at the same time, the

parallelization of the BCC encoder cannot be

implemented. Therefore, with only one core

performing the channel encoding, it is inevitable to

consume more time for the BCC encoding in

comparison with other functional blocks where

more computational resources have been used.

As mentioned in section 4, we used notification

function with semaphore mechanism to achieve the

synchronization among three cores. However, this

method works properly only under the condition

when the processing time for Core0 and Core1 is

less than that of Core2. If Core2 finishes the data

transfer before Core0 and Core1 reach to the next

pending on semaphore, the notification sent from

Core2 to Core0 and Core1 will be missed.

Consequently, one frame will be lost. Hence, it is

vitally important that the task run in Core0 and

Core1 should be well optimized so that they can

process the frame faster than that of Core2.

In the run time, Core0, Core1, and Core2 are in

charge of preamble field, data field, and

communicating with another device, respectively.

Therefore, threes cores are completely separated in

the proposed system in terms of functionality. Since

the preamble field and data field are processed

separately in Core0 and Core1, it is much easy to

change the radio parameters in the preamble field

under this system architecture to adjust to the new

requirement without affecting the programs run in

Core1 and Core2. Likewise, Core2 only works on

the data transfer from the DSP to another device

without interfering the execution of Core0 and

Core1.

Ⅵ. CONCLUSION

In this paper, we discussed the software

implementation details of the IEEE 802.11ac encoder

using the TMS320C6670 DSP. The implemented

encoder can generate all the signals consisting of

preamble field and data field under different MCS

TABLE 3. PROCESSING TIME OF THE ENCODER FOR 37

Processing Time Value (μs)

Preamble Field 4

Scrambling 5

BCC Encoder 43

BCC Interleaving 31

Modulation 20

Pilot Insertion 12

FFTC 20

Total 135

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

100 제15권 제4호

in IEEE 802.11ac standard. By utilizing the

computational power of multi-core and coprocessors

in the DSP, the maximum throughput is obtained

with each symbol processed within 4 μs. The

software implementation using DSPs provides

significant flexibility of the parameter change even

after the communication system has been

implemented. The implementation of IEEE 802.11ac

decoder as well as the implementation of

multi-antenna technology are our future work.

Acknowledgement

This research was supported by the

Commercialization Promotion Agency for R&D

Outcomes (COMPA) funded by the Ministry of

Science and ICT (MSIT). [2019K000060]

REFERENCES

[1] R. Akeela and B. Dezfouli, “Software-defined

Radios: Architecture, state-of-the-art, and

challenges,” Comput, Commun., vol. 128, 2018,

pp.106-125.

[2] M. S. Gast, “802.11ac A Survival Guide”,

O'Reilly Media, Inc., United States, 2013.

[3] Texas Instruments, "TMS320C6670 Multicore

Fixed and Floating-point System-On-Chip Data

Manual", SPRS689D, March 2012.

[4] C. R. Berger, V. Arbatov, Y. Voronenko, F.

Franchetti, and M. Püschel, “Real-time software

implementation of an IEEE 802.11a baseband

receiver on Intel multicore,” ICASSP, IEEE Int.

Conf. Acoust. Speech Signal Process. - Proc.,

2011, pp.1693–1696.

[5] A. T. Tran, D. N. Truong, and B. M. Baas, “A

complete real-time 802.11a baseband receiver

implemented on an array of programmable

processors,” Conf. Rec. - Asilomar Conf. Signals,

Syst. Comput., 2008, pp.165–170.

[6] Y. Choi, T. W. Kim, J. T. Park, S. W. Kim, and

K. H. Tchah, “Design of a baseband modem for

IEEE 802.11G wireless lan systems,” Proc. IEEE

Int. Symp. Consum. Electron. ISCE, 2003, pp.

140–141.

[7] Texas Instruments, “KeyStone Architecture Fast

Fourier Transform Coprocessor (FFTC) User’s

Guide”, SPRUGS2C, December 2011.

[8] Texas Instruments, “SYS/BIOS Inter-Processor

Communication (IPC) 1.25 User’s Guide”,

SPRUGO6E, September 2012.

[9] E. Perahia and R. Stacey, “Next Generation

Wireless LANs”, Cambridge University Press,

United Kingdom, 2013, pp.62-69.

[10] IEEE Computer Society, “IEEE Standard

802.11s-2011, Specific requirements Part 11 :
Wireless LAN Medium Access Control (MAC)

and Physical Layer (PHY) specifications

Amendment 10 : Mesh Networking IEEE

Computer Society,” IEEE Stand., vol. 2016, 2016.

[11] Texas Instruments, “TMS320C6000 Optimizing

Compiler v8.2.x User’s Guide”, SPRUI04B, 2017.

[12] Texas Instruments, "KeyStone Architecture

Enhanced Direct Memory Access (EDMA3)

Users Guide", SPRUGS5B, May 2015.

[13] MathWorks, "WLAN Toolbox User’s Guide

(R2019)", Natick, Massachusetts, United States,

September 2019.

Design and Implementation of Software Defined Radio Based IEEE 802.11ac Encoder Using Multicore DSP

디지털산업정보학회 논문지 101

▪저자소개▪

장 중 봉
Zhang, Zhong Feng

2018년 3월~현재

한양대학교 전자컴퓨터통신공학과

석사과정

2018년 2월 연변대학교 정보통신공학과

(공학학사)

관심분야 : DSP, vehicular comm, LTE-A,

etc

E-mail : zhongfeng.zhang@dsplab.

hanyang.ac.kr

안 흥 섭
Ahn, Heung Seop

2016년 3월~현재

한양대학교 전자컴퓨터통신공학과

박사과정

2016년 2월 한양대학교 전자컴퓨터통신공학과

(공학석사)

2013년 2월 한양대학교 융합전자공학부

(공학학사)

관심분야 : vehicular comm, 5G, LTE, Cell

planning, SDR etc.

E-mail : ahs90@dsplab.hanyang.ac.kr

최 승 원
Choi, Seung Won

2012년 3월~현재

HY-MC 연구센터 센터장

2002년~2011년

HY-SDR 연구센터 센터장

1992년~현재

한양대학교 융합전자공학부 교수

1990년~1992년

일본 우정성 통신연구소 선임

연구원

1989년~1990년

ETRI 선임 연구원

1988년~1989년

미국 Syracuse대학 전지 및

전산과 교수

1988년 12월 미국 Syracuse대학 전기공학

(공학박사)

1985년 12월 미국 Syracuse대학 전기공학

(공학석사)

1982년 2월 서울대학교 전자공학 (공학석사)

1982년 2월 한양대학교 전자공학 (공학학사)

관심분야 : SDR, 이동통신, 신호처리

E-mail : choi@dsplab.hanyang.ac.kr

논문접수일 :

수 정 일 :

게재확정일 :

2019년 11월 13일

2019년 12월 9일

2019년 12월 17일

