DOI QR코드

DOI QR Code

전극촉매의 내구성 향상을 위한 지지체 특성 평가 연구

A Study on Characteristics of Supports Materials for Durability Improvement of Electrocatalysts

  • 장정윤 (한국에너지기술연구원 연료전지연구실) ;
  • 임성대 (한국에너지기술연구원 연료전지연구실) ;
  • 박석희 (한국에너지기술연구원 연료전지연구실) ;
  • 정남기 (충남대학교 에너지과학기술대학원) ;
  • 박구곤 (한국에너지기술연구원 연료전지연구실)
  • JANG, JEONGYUN (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • YIM, SUNG-DAE (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • PARK, SEOK-HEE (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • JUNG, NAMGEE (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • PARK, GU-GON (Fuel Cell Laboratory, Korea Institute of Energy Research)
  • 투고 : 2019.10.11
  • 심사 : 2019.12.30
  • 발행 : 2019.12.30

초록

The development of cost-effective electrocatalysts with high durability is one of the most important challenges for the commercialization of polymer electrolyte fuel cells (PEFCs). The durability of the electrocatalyst has been studied in terms of structural change in the active metal and the support. In particular, in fuel cell vehicles, degradation of the carbon-based support is known to have a significant effect on the electrocatalyst deterioration since the start-up/shut-down cycle is frequently repeated. The requirements for the support of the electrocatalyst include high surface area, electrical conductivity, chemical stability, and so on. In this study, we propose the evaluation methods for choosing better support materials and present the physicochemical properties that promising carbon supports should have. Three kinds of carbon materials with different crystallinity are compared. From in-depth study using X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and accelerated stress test, it is clearly confirmed that the durability of carbon-supported electrocatalysts is closely related to the physicochemical properties of the carbon supports.

키워드

참고문헌

  1. R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, and M. A. Inbody, "PEM fuel cell electrocatalyst durability measurements", Journal of Power Sources, Vol. 163, No. 1, 2006, pp. 76-81, doi: https://doi.org/10.1016/j.jpowsour.2006.03.009.
  2. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inada, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima and N. Iwashita, "Scientific aspects of polymer electrolyte fuel cell durability and degradation", Chem. Rev., Vol. 107, No. 10, pp. 3904-3951, doi: https://doi.org/10.1021/cr050182l.
  3. P. Strasser and S. Kuhl, "Dealloyed Pt-based core-shell oxygen reduction electrocatalysts", Nano Energy, Vol. 29, 2016, pp. 166-177, doi: https://doi.org/10.1016/j.nanoen.2016.04.047.
  4. M. Shao, Q. Chang, J. P. Dodelet, and R. Chenitz, "Recent Advances in Electrocatalysts for Oxygen Reduction Reaction", Chem. Rev., Vol. 116, No. 6, 2016, pp. 3594-3657, doi: https://doi.org/10.1021/acs.chemrev.5b00462.
  5. J. Islam, S. K. Kim, E. Lee, and G. G. Park, "Durability enhancement of a Pt/C electrocatalyst using silica-coated carbon nanofiber as a corrosion-resistant support", International Journal of Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4177-4187, doi: https://doi.org/10.1016/j.ijhydene.2018.12.138.
  6. Y. Shao, G. Yin, and Y. Gao, "Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell", Journal of Power Sources, Vol. 171, No. 2, 2007, pp. 558-566, doi: https://doi.org/10.1016/j.jpowsour.2007.07.004.
  7. K. H. Kim, J. D. Lee, H. Lee, S. H. Park, S. D. Yim, N. Jung, and G. G. Park, "Preparation of Shape-Controlled PAlladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction", Transactions of the Korean hydrogen and new energy society, Vol. 29, No. 5, 2018, pp. 450-457, doi: https://doi.org/10.7316/KHNES.2018.29.5.450.
  8. C. A. Reiser, L. Bregoli, T. W. Patterson, J. S. Yi, J. D. Yang, M. L. Perry, and T. D. Jarvi, "A Reverse-Current Decay Mechanism for Fuel Cells", Electrochemical and Solid State Letters, Vol. 8, No. 6, 2005, pp. A276, doi: https://doi.org/10.1149/1.1896466.
  9. J. P. Meyers and R. M. Darling, "Model of Carbon Corrosion in PEM Fuel Cells", Journal of The Electrochemical Society, Vol. 153, No. 8, 2006, pp. A1432-A1442, doi: https://doi.org/10.1149/1.2203811.
  10. A. P. Younga, J. Stumperc, and E. Gyenge, "Characterizing the Structural Degradation in a PEMFC Cathode Catalyst Layer: Carbon Corrosion", J. Electrochem. Soc., Vol. 156, No. 8, 2009, pp. B913-B922, doi: https://doi.org/10.1149/1.3139963.
  11. L. Castanheira, L. Dubau, M. Mermoux, G. Berthome, N. Caque, E. Rossinot, M. Chatenet, and F. Maillard, "Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies", ACS Catal., Vol. 4, No. 7, 2014, pp. 2258-2267, doi: https://doi.org/10.1021/cs500449q.
  12. J. C. Meier, C. Galeano, I. Katsounaros, A. A. Topalov, A. Kostka, F. Schüth, and K. J. J. Mayrhofer, "Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start-Stop Conditions", ACS Catal., Vol. 2, No. 5, 2012, pp. 832-843, doi: https://doi.org/10.1021/cs300024h.
  13. J. Speder, A. Zana, I. Spanos, J. J. K. Kirkensgaard, K. Mortensen, M. Hanzlik, and M. Arenz, "Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate", Journal of Power Sources, Vol. 261, 2014, pp. 14-22, doi: https://doi.org/10.1016/j.jpowsour.2014.03.039.
  14. J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, and Y. Gao, "Effect of carbon black support corrosion on the durability of Pt/C catalyst", Journal of Power Sources, Vol. 171, No. 2, 2007, pp. 331-339, doi: https://doi.org/10.1016/j.jpowsour.2007.06.084.
  15. R. Sharma and S. M. Andersen, "Quantification on Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers during an Accelerated Stress Test", ACS Catal., Vol. 8, No. 4, 2018, pp. 3424-3434, doi: https://doi.org/10.1021/acscatal.8b00002.
  16. E. Antolini, "Carbon supports for low-temperature fuel cell catalysts", Applied Catalysis B: Environmental, Vol. 88, No. 1-2, 2009, pp. 1-24, doi: https://doi.org/10.1016/j.apcatb.2008.09.030.
  17. J. H. Park, S. M. Hwang, G. G. Park, S. H. Park, E. D. Park, and S. D. Yim, "Variations in performance-degradation behavior of Pt/CNF and Pt/C MEAs for the same degree of carbon corrosion", Electrochimica Acta, Vol. 260, 2018, pp. 674-683, doi: https://doi.org/10.1016/j.electacta.2017.12.015.
  18. D. A. Stevensa, M. T. Hicksc, G. M. Haugenc, and J. R. Dahna, "Ex Situ and In Situ Stability Studies of PEMFC Catalysts Effect of Carbon Type and Humidification on Degradation of the Carbon", J. Electrochem. Soc., Vol. 152, No. 12, 2005, pp. A2309-A2315, doi: https://doi.org/10.1149/1.2097361.
  19. F. Coloma, A. Sepulvedaescribano, and F. Rodriguezreinoso, "Heat-Treated Carbon-Blacks as Supports for Platinum Catalysts", Journal of Catalysis, Vol. 154, No. 2, 1995, pp. 299-305, doi: https://doi.org/10.1006/jcat.1995.1171.
  20. L. Castanheira, W. O. Silva, F. H. B. Lima, A. Crisci, L. Dubau, and F. Maillard, "Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere", ACS Catal., Vol. 5, No. 4, 2015, pp. 2184-2194, doi: https://doi.org/10.1021/cs501973j.
  21. X. X. Wang, Z. H. Tan, M. Zheng, and J. N. Wang, "Carbon nanocages: A new support material for Pt catalyst with remarkably high durability", Scientific Reports, Vol. 4437, No. 4, 2014, doi: https://doi.org/10.1038/srep04437.