DOI QR코드

DOI QR Code

Sulphate Reducing Bacteria and Methanogenic Archaea Driving Corrosion of Steel in Deep Anoxic Ground Water

  • Rajala, P. (VTT Technical Research Centre of Finland Ltd.) ;
  • Raulio, M. (European Chemicals Agency) ;
  • Carpen, L. (VTT Technical Research Centre of Finland Ltd.)
  • Received : 2019.08.01
  • Accepted : 2019.11.10
  • Published : 2019.12.31

Abstract

During the operation, maintenance and decommissioning of nuclear power plant radioactive contaminated waste is produced. This waste is stored in an underground repository 60-100 meters below the surface. The metallic portion of this waste comprises mostly carbon and stainless steel. A long-term field exposure showed high corrosion rates, general corrosion up to 29 ㎛ a-1 and localized corrosion even higher. High corrosion rate is possible if microbes produce corrosive products, or alter the local microenvironment to favor corrosion. The bacterial and archaeal composition of biofilm formed on the surface of carbon steel was studied using 16S rRNA gene targeting sequencing, followed by phylogenetic analyses of the microbial community. The functional potential of the microbial communities in biofilm was studied by functional gene targeting quantitative PCR. The corrosion rate was calculated from weight loss measurements and the deposits on the surfaces were analyzed with SEM/EDS and XRD. Our results demonstrate that microbial diversity on the surface of carbon steel and their functionality is vast. Our results suggest that in these nutrient poor conditions the role of methanogenic archaea in corrosive biofilm, in addition to sulphate reducing bacteria, could be greater than previously suspected.

Keywords

References

  1. P. Rajala, L. Carpen, M. Vepsalainen, M. Raulio, E. Huttunen-saarivirta, and M. Bomberg, Corrosion, 72, 1565 (2016). https://doi.org/10.5006/2118
  2. P. Rajala, E. Huttunen-Saarivirta, M. Bomberg, and L. Carpen, Corros. Sci., 159, 108148 (2019). https://doi.org/10.1016/j.corsci.2019.108148
  3. P. Rajala, L. Carpen, M. Vepsalainen, M. Raulio, E. Sohlberg, and M. Bomberg, Front. Microbiol., 24, 647 (2015).
  4. P. Rajala, M. Bomberg, M. Vepsalainen, and L. Carpen, Biofouling, 33, 195 (2017). https://doi.org/10.1080/08927014.2017.1285914
  5. L. Carpen, J. Maukonen, and S. Salo, Proc. NACE International Corrosion Conference Series, NACE (2013).
  6. H. C. Flemming and S. Wuertz, Nat. Rev. Microbiol., 17, 247 (2019). https://doi.org/10.1038/s41579-019-0158-9
  7. Sulphate-reducing Bacteria-Environmental and Engineered Systems, eds. L. L. Barton, W. A. Hamilton, ISBN 9788578110796, Cambridge University Press, Cambridge (2007).
  8. G. Muyzer, E. C. De Waal, and A. G. Uitierlinden, Appl. Environ. Microbiol., 59, 695 (1993). https://doi.org/10.1128/aem.59.3.695-700.1993
  9. J. Geets, B. Borremans, L. Diels, D. Springael, J. Vangronsveld, D. van der Lelie, and K. Vanbroekhoven, J. Microbiol. Meth., 66, 194 (2006). https://doi.org/10.1016/j.mimet.2005.11.002
  10. M. Wagner, A. J. Roger, J. L. Flax, G. A. Brusseau, and D. A. Stahl, J. Bacteriol., 180, 2975 (1998). https://doi.org/10.1128/jb.180.11.2975-2982.1998
  11. B. Hales, C. Edwards, D. Ritchie, G. Hall, R. Pickup, and J. Saunders, Appl. Environ. Microb., 62, 668 (1996). https://doi.org/10.1128/aem.62.2.668-675.1996
  12. U. Edwards, T. Rogall, H. Blocker, M. Emde, and E. C. Bottger, Nucleic Acids Res., 17, 7843 (1989). https://doi.org/10.1093/nar/17.19.7843
  13. M. Bomberg, M. Nyyssonen, P. Pitkanen, A. Lehtinen, and M. Itavaara, Biomed Res. Int., 2015, Article ID 979530 (2015).
  14. R. Grosskopf, P. H. Janssen, and W. Liesack, Appl. Environ. Microb., 64, 960 (1998). https://doi.org/10.1128/aem.64.3.960-969.1998
  15. D. A. Stahl and R. Amann, Nucleic Acid Techniques in Bacterial Systematics, pp. 205 - 248, John Wiley & Sons Ltd., Chichester, England (1991).
  16. N. Bano, S. Ruffin, B. Ransom, and J. T. Hollibaugh, Appl. Environ. Microb., 70, 781 (2004). https://doi.org/10.1128/AEM.70.2.781-789.2004
  17. S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Pace, Proc. Natl. Acad. Sci., 91, 1609-1613, USA (1994). https://doi.org/10.1073/pnas.91.5.1609
  18. P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. van Horn, and C. F. Weber, Appl. Environ. Microb., 75, 7537-41 (2009). https://doi.org/10.1128/AEM.01541-09
  19. E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glockner, Nucleic Acids Res., 35, 7188-96 (2007). https://doi.org/10.1093/nar/gkm864
  20. Q. Wang, G. M. Garrity, J. M. Tiedje, and J. R. Cole, Appl. Environ. Microb., 73, 5261 (2007). https://doi.org/10.1128/AEM.00062-07
  21. ASTM G 1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, West Conshohocken, PA, ASTM (1999).
  22. S. Kato, Microb. Biotechnol., 9, 141 (2016). https://doi.org/10.1111/1751-7915.12340
  23. R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control: An introduction to corrosion science and engineering, 4th ed., Vol. 7, ISBN 978-0-471-73279-2, WILEY-VCH Verlag GmbH, Weinheim (2008).
  24. T. Uchiyama, K. Ito, K. Mori, H. Tsurumaru, and S. Harayama, Appl. Environ. Microbiol., 76, 1783 (2010). https://doi.org/10.1128/AEM.00668-09
  25. H. T. Dinh, J. Kuever, M. Muszmann, A. W. Hassel, M. Stratmann, and F. Widdel, Nature, 427, 829 (2004). https://doi.org/10.1038/nature02321
  26. D. Xu and T. Gu, Int. Biodeter. Biodegr., 91, 74 (2014). https://doi.org/10.1016/j.ibiod.2014.03.014
  27. H. Venzlaff, D. Enning, J. Srinivasan, K. J. J. Mayrhofer, A. W. Hassel, F. Widdel, and M. Stratmann, Corros. Sci., 66, 88 (2013). https://doi.org/10.1016/j.corsci.2012.09.006
  28. K. Mori, H. Tsurumaru, and S. Harayama, J. Biosci. Bioeng., 110, 426 (2010). https://doi.org/10.1016/j.jbiosc.2010.04.012