DOI QR코드

DOI QR Code

Effect of Heat Treatment Conditions on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steel Used for Automotive Applications

  • Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Seong, Hwan Goo (POSCO Technical Research Laboratories) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • Received : 2019.12.04
  • Accepted : 2019.12.19
  • Published : 2019.12.31

Abstract

The purpose of this study was to examine the influence of conditions for quenching and/or tempering on the corrosion and hydrogen diffusion behavior of ultra-strong automotive steel in terms of the localized plastic strain related to the dislocation density, and the precipitation of iron carbide. In this study, a range of analytical and experimental methods were deployed, such as field emission-scanning electron microscopy, electron back scatter diffraction, electrochemical permeation technique, slow-strain rate test (SSRT), and electrochemical polarization test. The results showed that the hydrogen diffusion parameters involving the diffusion kinetics and hydrogen solubility, obtained from the permeation experiment, could not be directly indicative of the resistance to hydrogen embrittlement (HE) occurring under the condition with low hydrogen concentration. The SSRT results showed that the partitioning process, leading to decrease in localized plastic strain and dislocation density in the sample, results in a high resistance to HE-induced by aqueous corrosion. Conversely, coarse iron carbide, precipitated during heat treatment, weakened the long-term corrosion resistance. This can also be a controlling factor for the development of ultra-strong steel with superior corrosion and HE resistance.

Keywords

References

  1. J. Bian, H. Mohrbacher, J. S. Zhang, Y. T. Zhao, H. Z. Lu, and H. Dong, Adv. Manuf., 3, 27 (2015). https://doi.org/10.1007/s40436-015-0102-9
  2. E. H. Hwang, H. G. Seong, and S. J. Kim, Kor. J. Met. Mater., 56, 570 (2018). https://doi.org/10.3365/kjmm.2018.56.8.570
  3. M. Tetsuya, H. Kohei, and K. Hidetaka, JFE Technical Report, 4, 38 (2004).
  4. J. Yang, F. Huang, Z. Guo, Y. Rong, and N. Chen, Mater. Sci. Eng. A, 665, 76 (2016). https://doi.org/10.1016/j.msea.2016.04.025
  5. M. C. Jo, J. Y. Park, S. S. S, S. W. Kim, J. K. Oh, and S. H. Lee, Mater. Sci. Eng. A, 707, 65 (2017). https://doi.org/10.1016/j.msea.2017.09.027
  6. S. Takagi, Y. Toji, M. Yoshino, and K. Hasegawa, ISIJ Int., 52, 316 (2012). https://doi.org/10.2355/isijinternational.52.316
  7. H. Karbasian and A. E. Tekkaya, J. Mater. Process. Technol., 210, 2103 (2010). https://doi.org/10.1016/j.jmatprotec.2010.07.019
  8. A. R. Ranji A. H.and Zakeri, J. Nav. Archit. Mar. Eng., 7, 93 (2010).
  9. H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430
  10. N. Staicopolus, J. Electrochem. Soc., 110, 1121 (1963). https://doi.org/10.1149/1.2425602
  11. F. Farelas, M. Galicia, B. Brown, S. Nesis, and H. Castaneda, Corros. Sci., 52, 509 (2010). https://doi.org/10.1016/j.corsci.2009.10.007
  12. S. Jayabal, G. Saranya, J. Wu, Y. Liu, D. Geng, and X. Meng, J. Mater. Chem. A, 5, 47 (2017). https://doi.org/10.1039/JM9950500047
  13. A. M. Mebel and D. Y. Hwang, J. Phys. Chem. A, 105, 7460 (2001). https://doi.org/10.1021/jp011324s
  14. M. Wasim, C. Q. Li, M. Mahmoodian, and D. Robert, J. Mater. Civ. Eng., 31, 04018349-1 (2019). https://doi.org/10.1061/(asce)mt.1943-5533.0002560
  15. M. Cabrini, S. Lorenzi, T. Pastore, and D. P. Bucella, Metals, 8, 158 (2018). https://doi.org/10.3390/met8030158
  16. J. Cwiek, J. Achiev. Mater. Manuf. Eng., 37, 193 (2009).
  17. W. Hui, H. Zhang, Y. Zhang, X. Zhao, and C. Shao, Mater. Sci. Eng. A, 674, 615 (2016). https://doi.org/10.1016/j.msea.2016.08.028
  18. J. Zhao, Z. Jiang, and C. S. Lee, Corros. Sci., 82, 380 (2014). https://doi.org/10.1016/j.corsci.2014.01.042
  19. M. Koyama, E. Akiyama, Y. K. Lee, D. Raabe, and K. Tsuzaki, Int. J. Hydrogen Energ., 42, 12706 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.214
  20. S. A. Mujahid and H. K. D. H. Bhadeshia, Acta. Metall. Mater., 40, 389 (1992). https://doi.org/10.1016/0956-7151(92)90313-4
  21. ISO 17081:2004 (E), Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique, ISO, Switzerland (2004).
  22. S. J. Kim, J. S. Park, E. H. Hwang, S. M. Ryu, H. G. Seong, and Y. R. Cho, Int. J. Hydrogen Energ., 43, 17912 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.187
  23. ASTM G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2013).
  24. J. Krawczyk, P. Bala, and J. Pacyna, J. Microsc., 237, 411 (2010). https://doi.org/10.1111/j.1365-2818.2009.03275.x
  25. Y. Wang, S. Denis, B. Appolaire, and P. Archambault, J. Phys. IV France, 120, 103 (2004).
  26. K. H. Jack, JISI, 169, 26 (1951).
  27. Y. Ohmori and S. Sugisawa, Autumn Meeting of the Japan Institute of Metals, 12, 170 (1971).
  28. P. J. Konijnenberg, S. Zaefferer, and D. Raabe, Acta Mater., 99, 402 (2015). https://doi.org/10.1016/j.actamat.2015.06.051
  29. A. Adrover, M. Hiona, L. Capobianco, P. Tripodi, and V. Violante, J. Alloy. Comp., 358, 268 (2003). https://doi.org/10.1016/S0925-8388(03)00035-5
  30. S. J. Kim, E. W. Yun, H. G. Jung, and K. Y. Kim, J. Electrochem. Soc., 161, 173 (2014).
  31. H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430
  32. G. W. Hong and J. Y. Lee, J. Mater. Sci., 18, 271 (1983). https://doi.org/10.1007/BF00543835
  33. G. W. Hong and J. Y. Lee, Metall. Trans. A, 14, 156 (1983). https://doi.org/10.1007/BF02643751
  34. J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Corros. Sci. Tech., 17, 242 (2018).
  35. E. Serra, A. Perujo, and G. Benamati, J. Nucl. Mater., 245, 108 (1997). https://doi.org/10.1016/S0022-3115(97)00021-4
  36. B. D. Craig, Acta Metall., 25, 1027 (1977). https://doi.org/10.1016/0001-6160(77)90131-6
  37. S. J. Kim, E. H. Hwang, J. S. Park, S. M. Ryu, D. W. Yun, and H. G. Seong, npj Mater. Degrad., 3, 1 (2019). https://doi.org/10.1038/s41529-018-0065-y
  38. J. W. Mullin, Crystallization, 3rd ed., p. ?, Oxford press, Oxford, UK (1993).
  39. Y. S. Kim and J. G. Kim, Metals, 7, 182 (2017). https://doi.org/10.3390/met7050182