DOI QR코드

DOI QR Code

Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution

3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향

  • Kim, Si-On (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Hwang, Joong-Ki (School of Mechanical Engineering, Tongmyong University) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 김시온 (순천대학교 신소재공학과) ;
  • 황중기 (동명대학교 기계공학부) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2019.11.06
  • Accepted : 2019.12.17
  • Published : 2019.12.31

Abstract

The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

Keywords

References

  1. O. Grassel, L. Kruger, G. Frommeyer, and L. W. Meyer, Int. J. Plast., 16, 1391 (2000). https://doi.org/10.1016/S0749-6419(00)00015-2
  2. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, Curr. Opin. Solid St. M., 15, 141 (2011). https://doi.org/10.1016/j.cossms.2011.04.002
  3. B. C. De Cooman, Y. Estrin, and S. K. Kim, Acta Mater., 142, 283 (2018). https://doi.org/10.1016/j.actamat.2017.06.046
  4. Y. S. Chun, J. Lee, C. M. Bae, K. T. Prak, and C. S. Lee, Scr. Mater., 67, 681 (2012). https://doi.org/10.1016/j.scriptamat.2012.07.006
  5. D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Mater. Sci. Eng. A, 500, 196 (2009). https://doi.org/10.1016/j.msea.2008.09.031
  6. J. E. Jin and Y. K. Lee, Acta Mater., 60, 1680 (2012). https://doi.org/10.1016/j.actamat.2011.12.004
  7. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P. J. Jacques, Acta Mater., 58, 2464 (2010). https://doi.org/10.1016/j.actamat.2009.12.032
  8. K. G. Chin, C. Y. Kang, S. Y. Shin, S. Hong, S. Lee, H. S. Kim, K. Kim, and N. J. Kim, Mater. Sci. Eng. A, 528, 2922 (2011). https://doi.org/10.1016/j.msea.2010.12.085
  9. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige, Scr. Mater., 59, 963 (2008). https://doi.org/10.1016/j.scriptamat.2008.06.050
  10. S. Lee, J. Kim, S. J. Lee, and B. C. De Cooman, Scr. Mater., 65, 1073 (2011). https://doi.org/10.1016/j.scriptamat.2011.09.019
  11. X. Peng, D. Zhu, Z. Hu, W. Yi, H. Liu, and M. Wang, Mater. Design, 45, 518 (2013). https://doi.org/10.1016/j.matdes.2012.09.014
  12. S. M. Lee, S. J. Lee, S. Lee, J. H. Nam, and Y. K. Lee, Acta Mater., 144, 738 (2018). https://doi.org/10.1016/j.actamat.2017.11.023
  13. M. Bobby Kannan, R. K. Singh Raman, and S. Khoddam, Corros. Sci., 50, 2879 (2008). https://doi.org/10.1016/j.corsci.2008.07.024
  14. W. Wang, D. Wang, and F. Han, Mater. Lett., 248, 60 (2019). https://doi.org/10.1016/j.matlet.2019.04.001
  15. X. Yuan, Y. Zhao, X. Li, and L. Chen, Mater. Sci. Technol., 33, 1555 (2017). https://doi.org/10.1016/j.jmst.2017.08.004
  16. Y. S. Zhang and X. M. Zhu, Corros. Sci., 41, 1817 (1999). https://doi.org/10.1016/S0010-938X(99)00017-7
  17. H. Geng, X. Wu, H. Wang, and Y. Min, J. Mater. Sci., 43, 83 (2008). https://doi.org/10.1007/s10853-007-2084-x
  18. B. Q. Hu, P. K. Bai, Z. Z. Dong, and J. Cheng, Trans. Nonferrous Met. Soc. China, 19, 149 (2009). https://doi.org/10.1016/S1003-6326(08)60243-5
  19. S. Suzuki, E. Matsubara, T. Komatsu, Y. Okamoto, K. Kanie, A. Muramatsu, H. Konishi, J. Mizuki, and Y. Waseda, Corros. Sci., 49, 1081 (2007). https://doi.org/10.1016/j.corsci.2006.06.029
  20. B. Kim, S. Kim, and H. Kim, Adv. Mater. Sci. Eng., 2018, 1 (2018)
  21. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Metall. Mater. Trans. A, 40, 3076 (2009). https://doi.org/10.1007/s11661-009-0050-8
  22. A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008). https://doi.org/10.1016/j.msea.2006.12.170
  23. J. K. Hwang, Mater. Sci. Eng. A, 737, 188 (2018). https://doi.org/10.1016/j.msea.2018.09.049
  24. S. J. Lee, J. Kim, S. N. Kane, and B. C. De Cooman, Acta Mater., 59, 6809 (2011). https://doi.org/10.1016/j.actamat.2011.07.040
  25. Y. N. Dastur and W. C. Leslie, Metall. Trans. A, 12, 749 (1981). https://doi.org/10.1007/BF02648339
  26. B. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, Acta Mater., 148, 249 (2018). https://doi.org/10.1016/j.actamat.2018.02.005
  27. S. Y. Jo, J. Han, J. H. Kang, S. Kang, S. Lee, and Y. K. Lee, J. Alloy. Compd., 627, 374 (2015). https://doi.org/10.1016/j.jallcom.2014.11.232
  28. Y. W. Jang, J. H. Hong, and J. G. Kim, Met. Mater. Int., 15, 623 (2009). https://doi.org/10.1007/s12540-009-0623-5
  29. A. A. Hermas, K. Ogura, and T. Adachi, Electrochem. Acta, 40, 837 (1995). https://doi.org/10.1016/0013-4686(94)00365-8
  30. M. Seo, G. Hultquist, C. Leygraf, and N. Sato, Corros. Sci., 26, 949 (1986). https://doi.org/10.1016/0010-938X(86)90085-5
  31. Y. S. Choi, J. J. Shim, and J. G. Kim, J. Alloy. Compd., 391, 162 (2005). https://doi.org/10.1016/j.jallcom.2004.07.081
  32. Z. B. Zheng and Y. G. Zheng, Corros. Sci., 112, 657 (2016). https://doi.org/10.1016/j.corsci.2016.09.005
  33. G. S. Frankel, J. Electrochem. Soc., 145, 2186 (1998). https://doi.org/10.1149/1.1838615
  34. J. H. Park, H. S. Seo, K. Y. Kim, and S. J. Kim, J. Electrochem. Soc., 163, 791 (2016).
  35. A. S. Hamada, L. P. Karjalainen, and M. A. El-Zeky, Passivation of Metals and Semiconductors and the Properties of Thin Oxide Layers, 1st ed., p. 77, P. Marcus & V. Maurice, Paris (2005).
  36. I. J. Park, K. H. Jeong, J. G. Jung, C. S. Lee, and Y. K. Lee, Int. J. Hydrogen Energ., 37, 9925 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.100
  37. M. Koyama, E. Akiyama, Y. K. Lee, D. Raabe, and K. Tsuzaki, Int. J. Hydrogen Energ., 42, 12706 (2017). https://doi.org/10.1016/j.ijhydene.2017.02.214