DOI QR코드

DOI QR Code

Experimental Throughfall Exclusion Studies on Forest Ecosystems: A Review

  • Park, Seunghyeon (Graduate School of Forestry and Environmental Systems, Kangwon National University) ;
  • Kim, Ikhyun (Graduate School of Forestry and Environmental Systems, Kangwon National University) ;
  • Kim, Beomjeong (Graduate School of Forestry and Environmental Systems, Kangwon National University) ;
  • Choi, Byoungkoo (Division of Forest Science, Kangwon National University)
  • Received : 2019.09.24
  • Accepted : 2019.11.04
  • Published : 2019.12.31

Abstract

Climate change has been intensifying and affecting forest ecosystems. Over the years, the intensity and frequency of climate change have increased and the effects of climate change have been aggravating due to cumulative greenhouse gases such as CO2, which has resulted in several negative consequences, drought being the main threat among all. Drought affects forest ecosystems directly and indirectly. Insufficient soil moisture, due to drought, may affect the growth of plants and soil respiration (SR), and soil temperature may increase because of desiccated soil. In addition, the mortality rate of plants and soil microorganisms increases. As a result, these effects could reduce forest productivity. Thus, in this article, we have presented various research studies on artificial drought using throughfall exclusion, and we have mainly focused on SR, which is significantly related to forest productivity. The research studies done worldwide were sorted as per the main groups of Köppen-Geiger climate classification and intensively reviewed, especially in tropical climates and temperate climates. We briefly reviewed the properties among the exclusion experiments about the temperate climate, which mostly includes Korean forests. Our review is not a proof of concept, but an assumption for adequate investigation of drought effects in the Korean forest.

Keywords

References

  1. Allen CD, Macalady AK, Chenchounic H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259: 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  2. Asensio D, PeNuelas J, LlusiA J, OgayA R, Filella I. 2007. Interannual and interseasonal soil $CO_2$ efflux and VOC exchange rates in a Mediterranean holm oak forest in response to experimental drought. Soil Biol Biochem 39: 2471-2484. https://doi.org/10.1016/j.soilbio.2007.04.019
  3. Boisvenue C, Running SW. 2006. Impacts of climate change on natural forest productivity - evidence since the middle of the 20th century. Glob Change Biol 12: 862-882. https://doi.org/10.1111/j.1365-2486.2006.01134.x
  4. Borken W, Davidson EA, Savage K, Sundquist ET, Steudler P. 2006a. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol Biochem 38: 1388-1395. https://doi.org/10.1016/j.soilbio.2005.10.011
  5. Borken W, Savage K, Davidson EA, Trumbore SE. 2006b. Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Change Biol 12: 177-193. https://doi.org/10.1111/j.1365-2486.2005.001058.x
  6. Borken W, Xu YJ, Brumme R, Lamersdorf N. 1999. Climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: Drought and rewetting effects. Soil Sci Soc Am J 63: 1848-1855. https://doi.org/10.2136/sssaj1999.6361848x
  7. Brando P, Ray D, Nepstad D, Cardinot G, Curran LM, Oliveira R. 2006. Effects of partial throughfall exclusion on the phenologyof Coussarea racemosa (Rubiaceae) in an east-centralAmazon rainforest. Oecologia 150: 181-189. https://doi.org/10.1007/s00442-006-0507-z
  8. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P. 2008. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc Lond B Biol Sci 363: 1839-1848. https://doi.org/10.1098/rstb.2007.0031
  9. Casals P, Lopez‐Sangil L, Carrara A, Gimeno C, Nogues S. 2011. Autotrophic and heterotrophic contributions to short‐term soil $CO_2$ efflux following simulated summer precipitation pulses in a Mediterranean dehesa. Glob Biogeochem Cycle 25: GB3012.
  10. Cleveland CC, Wieder WR, Reed SC, Townsend AR. 2010. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecol 91: 2313-2323. https://doi.org/10.1890/09-1582.1
  11. Da Costa ACL, Galbraith D, Almeida S, Portela BTT, da Costa M, Silva JDA Jr, Braga AP, de Gonçalves PHL, Oliveira AAR, Fisher R. Phillips OL, Metcalfe DB, Levy P, Meir P. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187: 579-591. https://doi.org/10.1111/j.1469-8137.2010.03309.x
  12. Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ, Simberloff D, Swanson FJ, Stocks BJ, Michael Wotton B. 2001. Climate Change and Forest Disturbances: Climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 51: 723-734. https://doi.org/10.1641/0006-3568(2001)051[0723:CCAFD]2.0.CO;2
  13. Dale VH, Joyce LA, McNulty S, Neilson RP. 2000. The interplay between climate change, forests, and disturbances. Sci Total Environ 262: 201-204. https://doi.org/10.1016/S0048-9697(00)00522-2
  14. Davidson EA, Ishida FY, Nepstad DC. 2004. Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 10: 718-730. https://doi.org/10.1111/j.1365-2486.2004.00762.x
  15. Davidson EA, Nepstad DC, Ishida FY, Brando PM. 2008. Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 14: 2582-2590. https://doi.org/10.1111/j.1365-2486.2008.01694.x
  16. Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Sci 263: 185-190. https://doi.org/10.1126/science.263.5144.185
  17. D'Orangeville L, Cote B, Houle D, Morin H. 2013. The effects of throughfall exclusion on xylogenesis of balsam fir. Tree Physiol 33: 516-526. https://doi.org/10.1093/treephys/tpt027
  18. Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL. 2000. Altering Rainfall Timing and Quantity in a Mesic Grassland Ecosystem: Design and Performance of Rainfall Manipulation Shelters. Ecosyst 3: 308-319. https://doi.org/10.1007/s100210000028
  19. Fuchslueger L, Bahn M, Fritz K, Hasibeder R, Richter A. 2014a. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol 201: 916-927. https://doi.org/10.1111/nph.12569
  20. Fuchslueger L, Kastl EM, Bauer F, Kienzl S, Hasibeder R, Ladreiter-Knauss T, Schmitt M, Bahn M, Scholter M, Richter A, Szukics U. 2014b. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences 11: 6003-6015. https://doi.org/10.5194/bg-11-6003-2014
  21. Gaul D, Hertel D, Borken W, Matzner E, Leuschner C. 2008. Effects of experimental drought on the fine root system of mature Norway spruce. For Ecol Manage 256: 1151-1159. https://doi.org/10.1016/j.foreco.2008.06.016
  22. Grace J, Berninger F, Nagy L. 2002. Impacts of climate change on the tree line. Ann Bot 90: 537-544. https://doi.org/10.1093/aob/mcf222
  23. Houghton RA, Lawrence KT, Hackler JL, Brown S. 2001. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Change Biol 7: 731-746. https://doi.org/10.1046/j.1365-2486.2001.00426.x
  24. Kim BJ, Choi BK. 2018. Effects of Experimental Drought on Soil Bacterial Community in a Larix Kaempferi Stand. J For Environ Sci 34: 258-261.
  25. Kim BJ, Yun YJ, Choi BK. 2018. Effects of Experimental Drought on Soil CO2 Efflux in a Larix Kaempferi Stand. J For Environ Sci 34: 253-257.
  26. Lee SS. 2019. Climate Change Adaptive Implementation Assessment Proposal for Local Governments Utilizing Vulnerability Index. J For Environ Sci 35: 47-53.
  27. Lu H, Liu S, Wang H, Luan J, Schindlbacher A, Liu Y, Wang Y. 2017. Experimental throughfall reduction barely affects soil carbon dynamics in a warm-temperate oak forest, central China. Sci Rep 7: 15099. https://doi.org/10.1038/s41598-017-15157-3
  28. Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Terborgh J, Martinez RV, Vinceti B. 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol 12: 1107-1138. https://doi.org/10.1111/j.1365-2486.2006.01120.x
  29. Moser G, Schuldt B, Hertel D, Horna V, Coners H, Barus H, Leuschner C. 2014. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought. Glob Change Biol 20: 1481-1497. https://doi.org/10.1111/gcb.12424
  30. Nepstad DC, Mountinho P, Dias-Filho MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida FY, Tohlver I, Belk E, Kalif K, Schwalbe K. 2002. The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res 107: LBA53.1-17. https://doi.org/10.1029/2001JD001527
  31. Ogaya R, Peñuelas J. 2004. Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Ecoscience 11: 263-270. https://doi.org/10.1080/11956860.2004.11682831
  32. Ogaya, R, Penuelas J, Martinez-Vilalta J, Mangiron M. 2003. Effect of drought on diameter increment of Quercus ilex, Phillyrea latifolia, and Arbutus unedo in a holm oak forest of NE Spain. For Ecol Manage 180: 175-184. https://doi.org/10.1016/S0378-1127(02)00598-4
  33. Pachauri RK, Meyer L, Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, Church JA, Clarke L, Dahe Q, Dasgupta P, Dubash NK, Edenhofer O, Elgizouli I, Field CB, Forster P, Friedlingstein P, Fuglestvedt J, Gomez-Echeverri L, Hallegatte S, Hegerl G, Howden M, Jiang K, Jimenez Cisneroz B, Kattsov V, Lee H, Mach KJ, Marotzke J, Mastrandrea MD, Meyer L, Minx J, Mulugetta Y, O'Brien K, Oppenheimer M, Pereira JJ, Pichs-Madruga R, Plattner G-K, Portner H-O, Power SB, Preston B, Ravindranath NH, Reisinger A, Riahi K, Rusticucci M, Scholes R, Seyboth K, Sokona Y, Stavins R, Stocker TF, Tschakert P, van Vuuren D, van Ypserle J-P. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 pp.
  34. Powell TL, Galbraith DR, Christoffersen BO, Harper A, Imbuzeiro HM, Rowland L, Almeida S, Brando PM, da Costa AC, Costa MH, Levine NM, Malhi Y, Saleska SR, Sotta E, Williams M, Meir P, Moorcroft PR. 2013. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. New Phytol 200: 350-365. https://doi.org/10.1111/nph.12390
  35. Raich JW, Potter CS. 1995. Global Patterns of Carbon Dioxide Emissions from Soils. GlobBiogeochem Cycle 9: 23-36. https://doi.org/10.1029/94GB02723
  36. Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus Ser B-Chem Phys Meteorol 44: 81-89. https://doi.org/10.3402/tellusb.v44i2.15428
  37. Raich JW, Tufekcioglu A. 2000. Vegetation and Soil Respiration: Correlations and Controls. Biogeochem 48: 71-90. https://doi.org/10.1023/A:1006112000616
  38. Saatchi SS, Houghton RA, Dos Santos Alvala RC, Soares JV, Yu Y. 2007. Distribution of aboveground live biomass in the Amazon. Glob Change Biol 13: 816-837. https://doi.org/10.1111/j.1365-2486.2007.01323.x
  39. Schlesinger WH, Andrews JA. 2000. Soil respiration and the global carbon cycle. Biogeochem 48: 7-20. https://doi.org/10.1023/A:1006247623877
  40. Schlesinger WH. 1977. Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8: 51-81. https://doi.org/10.1146/annurev.es.08.110177.000411
  41. Seo JW, Park WK. 2010. Relationships between climate and tree-ring growths of mongolian oaks with various topographical characteristics in Mt. Worak, Korea. Korean J Environ Res Technol 13: 36-45. (in Korean with English abstract)
  42. Singh JS, Gupta SR. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot Rev 43: 449-528. https://doi.org/10.1007/BF02860844
  43. Sotta ED, Veldkamp E, Schwendenmann L, Guimaraes BR, Paixao RK, Ruivo MDLP, Da Costa ACL, Meir P. 2007. Effects of an induced drought on soil carbon dioxide ($CO_2$) efflux and soil $CO_2$ production in an Eastern Amazonian rainforest, Brazil. Glob Change Biol 13: 2218-2229. https://doi.org/10.1111/j.1365-2486.2007.01416.x
  44. Sowerby A, Emmett BA, Williams D, Beier C, Evans CD. 2010. The response of dissolved organic carbon (DOC) and the ecosystem carbon balance to experimental drought in a temperate shrubland. Eur J Soil Sci 61: 697-709. https://doi.org/10.1111/j.1365-2389.2010.01276.x
  45. van Straaten O, Veldkamp E, Corre MD. 2011. Simulated drought reduces soil CO2 efflux and production in a tropical forest in Sulawesi, Indonesia. Ecosphere 2: 1-22.
  46. van Straaten O, Veldkamp E, Köhler M, Anas I. 2010. Spatial and temporal effects of drought on soil $CO_2$ efflux in a cacao agroforestry system in Sulawesi, Indonesia. Biogeosciences 7: 1123-1235.
  47. Yahdjian L, Sala OE. 2002. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133: 95-101. https://doi.org/10.1007/s00442-002-1024-3
  48. Yun SJ, Han SR, Han SH, Lee SJ, Jung YJ, Kim SJ, Son YH. 2014. Open-field Experimental Warming and Precipitation Manipulation System Design to Simulate Climate Change Impact. J Korean Soc For Sci 103: 159-164. https://doi.org/10.14578/jkfs.2014.103.2.159