DOI QR코드

DOI QR Code

Experimental and numerical investigation on gas turbine blade with the application of thermal barrier coatings

  • Aabid, Abdul (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia) ;
  • Jyothi, Jyothi (Department of Aeronautical Engineering, Faculty of Engineering and Technology, Khaja Bandanawaz University) ;
  • Zayan, Jalal Mohammed (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia) ;
  • Khan, Sher Afghan (Department of Mechanical Engineering, Faculty of Engineering, International Islamic University Malaysia)
  • Received : 2019.10.05
  • Accepted : 2020.01.20
  • Published : 2019.12.25

Abstract

The engine parts material used in gas turbines (GTs) should be resistant to high-temperature variations. Thermal barrier coatings (TBCs) for gas turbine blades are found to have a significant effect on prolonging the life cycle of turbine blades by providing additional heat resistance. This work is to study the performance of TBCs on the high-temperature environment of the turbine blades. It is understood that this coating will increase the lifecycles of blade parts and decrease maintainence and repair costs. Experiments were performed on the gas turbine blade to see the effect of TBCs in different combinations of materials through the air plasma method. Three-layered coatings using materials INCONEL 718 as base coating, NiCoCrAIY as middle coating, and La2Ce2O7 as the top coating was applied. Finite element analysis was performed using a two-dimensional method to optimize the suitable formulation of coatings on the blade. Temperature distributions for different combinations of coatings layers with different materials and thickness were studied. Additionally, three-dimensional thermal stress analysis was performed on the blade with a commercial code. Results on the effect of TBCs shows a significant improvement in thermal resistance compared to the uncoated gas turbine blade.

Keywords

References

  1. Aabid, A. and Khan, S.A. (2018), "Optimization of heat transfer on thermal barrier coated gas turbine blade related", Proceedings of IOP Conference Series: Materials Science and Engineering, 370, 1-9. https://doi.org/10.1088/1757-899X/370/1/012022
  2. Aktaa, J., Sfar, K. and Munz, D. (2005), "Assessment of TBC systems failure mechanisms using a fracture mechanics approach", Acta Materialia, 53(16), 4399-4413. https://doi.org/10.1016/j.actamat.2005.06.003
  3. Al Ali, A.R. and Janajreh, I. (2015), "Numerical simulation of turbine blade cooling via jet impingement", Energy Procedia, 75, 3220-3229. https://doi.org/10.1016/j.egypro.2015.07.683
  4. Bacos, M.P., Dorvaux, J.M., Lavigne, O., Mevrel, R., Poulain, M., Rio, C. and Vidal-Setif, M.H. (2011), "Performance and degradation mechanisms of thermal barrier coatings for turbine blades : A review of onera activities", J. Aerosp. Lab, 3, 1-11.
  5. Bakan, E. and Vassen, R. (2017), "Ceramic top coats of plasma-sprayed thermal barrier coatings: materials, processes, and properties", J. Thermal Spray Technol., 26(6), 992-1010. https://doi.org/10.1007/s11666-017-0597-7
  6. Bialas, M. (2008), "Finite element analysis of stress distribution in thermal barrier coatings", Surf. Coatings Technol., 202(24), 6002-6010. https://doi.org/10.1016/j.surfcoat.2008.06.178
  7. Choi, S.R., Hutchinson, J.W. and Evans, A.G. (1999), "Delamination of multilayer thermal barrier coatings", Mech. Mater., 31(7), 431-447. https://doi.org/10.1016/S0167-6636(99)00016-2
  8. Dautov, S.S., Shornikov, P.G., Rezyapova, L.R. and Akhatov, I.S. (2019), "Increasing thermal and mechanical properties of thermal barrier coatings by suspension plasma spraying technology", J. Phys.: Conference Series, 1281, 1-4. https://doi.org/10.1088/1742-6596/1281/1/012008
  9. Doleker, K.M., Ozgurluk, Y. and Karaoglanli, A.C. (2018), "Isothermal oxidation and thermal cyclic behaviors of YSZ and double-layered YSZ/La2Zr2O7 thermal barrier coatings (TBCs)", Surf. Coatings Technol., 351, 78-88. https://doi.org/10.1016/j.surfcoat.2018.07.069
  10. Gentleman, M.M. and Clarke, D.R. (2004), "Concepts for luminescence sensing of thermal barrier coatings", Surf. Coatings Technol., 188-189, 93-100. https://doi.org/10.1016/j.surfcoat.2004.08.005
  11. Hermosilla, U., Jones, I.A., Hyde, T.H., Thomson, R.C. and Karunaratne, M.S.A. (2009), "Finite element modeling of the development of stresses in thermal barrier coatings", Proceedings of 2009 International Conference on Sustainable Power Generation and Supply, 1-7. https://doi.org/10.1109/SUPERGEN.2009.5348018
  12. Hernandez, M.T., Karlsson, A.M. and Bartsch, M. (2009), "On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings", Surf. Coatings Technol., 203(23), 3549-3558. https://doi.org/10.1016/j.surfcoat.2009.05.018
  13. Hwang, S., Son, C., Seo, D., Rhee, D.-H. and Cha, B. (2016), "Comparative study on steady and unsteady conjugate heat transfer analysis of a high-pressure turbine blade", Appl. Thermal Eng., 99, 765-775. https://doi.org/10.1016/j.applthermaleng.2015.12.139
  14. Kakuee, O., Fathollahi, V., Oliaiy, P., Agha-Aligol, D. and Lamehi-Rachti, M. (2015), "Ion beam analysis of gas turbine blades: Evaluation of refurbishment quality", Bull. Mater. Sci., 38(2), 511-516. https://doi.org/https://doi.org/10.1007/s12034-015-0867-2
  15. Karaoglanli, A.C., Turk, A. and Ozdemir, I. (2016), "Isothermal oxidation behavior and kinetics of thermal barrier coatings produced by cold gas dynamic spray technique", Surf. Coatings Technol., 318, 72-81. https://doi.org/10.1016/j.surfcoat.2016.12.021
  16. Kulczyk-Malecka, J., Zhang, X., Carr, J., Carabat, A.L., Sloof, W.G., Van Der Zwaag, S., Cernuschi, F., Nozahic, F., Monceau, D., Estournes, C. and Withers, P.J. (2016), "Influence of embedded MoSi2 particles on the high-temperature thermal conductivity of SPS produced yttria-stabilised zirconia model thermal barrier coatings", Surf. Coatings Technol., 308, 31-39. https://doi.org/10.1016/j.surfcoat.2016.07.113
  17. Kumar, V. and Kandasubramanian, B. (2016), "Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications", Particuology, 27, 1-28. https://doi.org/10.1016/j.partic.2016.01.007
  18. Kyaw, S., Jones, A., Jepson, M.A.E., Hyde, T. and Thomson, R.C. (2017), "Effects of three-dimensional coating interfaces on thermo-mechanical stresses within plasma spray thermal barrier coatings", Mater. Des., 125, 189-204. https://doi.org/10.1016/j.matdes.2017.03.067
  19. Lee, J.-M., Song, H., Kim, Y., Koo, J.-M. and Seok, C.-S. (2015), "Evaluation of thermal gradient mechanical fatigue characteristics of the thermal barrier coating, considering the effects of thermally grown oxide", Int. J. Precision Eng. Manuf., 16(7), 1675-1679. https://doi.org/10.1007/s12541-015-0220-0
  20. Li, G.-R., Yang, G.-J., Li, C.-X. and Li, C.-J. (2017), "A comprehensive mechanism for the sintering of plasma-sprayed nanostructured thermal barrier coatings", Ceram. Int., 45(12), 9600-9615. https://doi.org/10.1016/j.ceramint.2017.04.083
  21. Liu, J.H., Liu, Y.B., He, X. and Liu, L. (2016), "Study on TBCs insulation characteristics of a turbine blade under serving conditions", Case Studies in Thermal Engineering, 8, 250-259. https://doi.org/10.1016/j.csite.2016.08.004
  22. Ma, X. and Ruggiero, P. (2018), "Practical aspects of suspension plasma spray for thermal barrier coating on potential gas turbine components", J. Thermal Spray Technol., 27(4), 591-602. https://doi.org/10.1007/s11666-018-0700-8
  23. Mafeed, M.P., Salman Ali, M., Prabin, C., Ramis, M.K., Ali Baig, M.A. and Khan, S.A. (2012), "Optimum length for pin fins used in electronic cooling", Appl. Mech. Mater., 110-116, 1667-1673. https://doi.org/10.4028/www.scientific.net/AMM.110-116.1667
  24. Mao, J., Liu, M., Deng, C.G., Deng, C.M., Zhou, K.S. and Deng, Z.Q. (2017), "Preparation and distribution analysis of thermal barrier coatings deposited on multiple vanes by plasma spray-physical vapor deposition technology", J. Eng. Mater. Technol., Transactions of the ASME, 139(4), 1-7. https://doi.org/10.1115/1.4036584
  25. Miller, R.A. (1997), "Thermal barrier coatings for aircraft engines: history and directions", J. Thermal Spray Technol., 6(1), 35-42. https://doi.org/10.1007/BF02646310
  26. Moon, H., Kim, K.M., Jeon, Y.H., Shin, S., Park, J.S. and Cho, H.H. (2015), "Effect of thermal stress on creep lifetime for a gas turbine combustion liner", Eng. Fail. Anal., 47, 34-40. https://doi.org/10.1016/j.engfailanal.2014.10.004
  27. Moskalenko, A.B. and Kozhevnikov, A.I. (2016), "Estimation of gas turbine blades cooling efficiency", Procedia Eng., 150, 61-67. https://doi.org/10.1016/j.proeng.2016.06.716
  28. Ogiriki, E.A., Li, Y.G., Nikolaidis, T., Isaiah, T.E. and Sule, G. (2015), "Effect of fouling, thermal barrier coating degradation, and film cooling holes blockage on gas turbine engine creep life", Procedia CIRP, 38, 228-233. https://doi.org/10.1016/j.procir.2015.07.017
  29. Padture, N.P., Gell, M. and Jordan, E.H. (2002), "Thermal barrier coatings for gas-turbine engine applications", Review: Mater. Sci., 296(5566), 280-284. https://doi.org/10.1126/science.1068609
  30. Rosler, J., Baker, M. and Volgmann, M. (2001), "Stress state and failure mechanisms of thermal barrier coatings: Role of creep in thermally grown oxide", Acta Materialia, 49(18), 3659-3670. https://doi.org/10.1016/S1359-6454(01)00283-X
  31. Rousseau, F., Quinsac, A., Morvan, D., Bacos, M.P., Lavigne, O., Rio, C., Guinard, C. and Chevillard, B. (2019), "A new injection system for spraying liquid nitrates in a low power plasma reactor: Application to local repair of the damaged thermal barrier coating", Surf. Coatings Technol., 357, 195-203. https://doi.org/10.1016/j.surfcoat.2018.09.069
  32. Sadowski, T. and Golewski, P. (2012), "The analysis of heat transfer and thermal stresses in thermal barrier coatings under exploitation", Defect Diffusion Forum, 326-328, 530-535. https://doi.org/10.4028/www.scientific.net/DDF.326-328.530
  33. Sadowski, T. and Pietras, D. (2016), "Heat transfer process in jet turbine blade with functionally graded thermal barrier coating", Solid State Phenomena, 254, 170-175. https://doi.org/10.4028/www.scientific.net/SSP.254.170
  34. Saif, M., Mullick, P. and Imam, A. (2019), "Analysis and structural design of various turbine blades under variable conditions : A review", Adv. Mater. Res., 8(1), 11-24. https://doi.org/https://doi.org/10.12989/amr.2019.8.1.011
  35. Stecura, S. (1979), "Effects of compositional change on the performance of a thermal barrier coating system", Proceedings of the 3rd Annual Conference on Composite and Advanced Materials, Merritt Island, FL, USA, January.
  36. Subramani, P., Padgelwar, N., Shetty, S., Pandit, A., Sreenivasulu, V., Arivazhagan, N., Duoli, W.U. and Manikandan, M. (2019), "Hot corrosion studies on detonation-gun-sprayed NiCrAlY and 80Ni-20Cr coatings on alloy X22CrMoV12-1 at $600^{\circ}C$", Transact. Indian Inst. Metals, 20-23. https://doi.org/10.1007/s12666-019-01567-6
  37. Tang, W.Z., Yang, L., Zhu, W., Zhou, Y.C., Guo, J.W. and Lu, C. (2015), "Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure tbcs by a fluid-solid coupling method", J. Mater. Sci. Technol., 32, 452-458. https://doi.org/10.1016/j.jmst.2016.03.009
  38. Umair, S.M., Alrobaian, A.A. and Khan, S.A. (2018), "Numerical investigation of critical range for the occurrence of secondary peaks in the nusselt distribution curve", CFD Letters, 1(1), 12-27.
  39. Vardelle, A., Moreau, C., Akedo, J., Ashrafizadeh, H., Berndt, C.C., Berghaus, J.O., Boulos, M., Brogan, J., Bourtsalas, A.C., Dolatabadi, A. and Dorfman, M. (2016), "The 2016 Thermal spray roadmap", J. Thermal Spray Technol., 25(8), 1376-1440. https://doi.org/10.1007/s11666-016-0473-x
  40. Zhao, S., Zhang, C., Wu, N. and Wang, H. (2011), "Quality evaluation for air plasma sprays thermal barrier coatings with pulsed thermography", Progress in Natural Science: Mater. Int., 21(4), 301-306. https://doi.org/10.1016/S1002-0071(12)60061-6
  41. Zhu, W., Cai, M., Yang, L., Guo, J.W., Zhou, Y.C. and Lu, C. (2015), "The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings", Surf. Coatings Technol., 276, 160-167. https://doi.org/10.1016/j.surfcoat.2015.06.061
  42. Zhu, W., Wang, J.W., Yang, L., Zhou, Y.C., Wei, Y.G. and Wu, R.T. (2017), "Modeling and simulation of the temperature and stress fields in a 3D turbine blade coated with thermal barrier coatings", Surf. Coatings Technol., 315, 443-453. https://doi.org/10.1016/j.surfcoat.2017.03.012