DOI QR코드

DOI QR Code

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh (Mechanical Engineering Department, S.V. National Institute of Technology) ;
  • Shaikh, A.A. (Mechanical Engineering Department, S.V. National Institute of Technology)
  • 투고 : 2019.09.18
  • 심사 : 2020.02.12
  • 발행 : 2019.12.25

초록

Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

키워드

참고문헌

  1. Baghani, M., Naghdabadi, R., Arghavani, J. and Sohrabpour, S. (2012), "A constitutive model for shape memory polymers with application to torsion of prismatic bars", J. Intel. Mater. Syst. Struct., 23(2), 107-116. https://doi.org/10.1177/1045389X11431745
  2. Baghani, M., Mohammadi, H. and Naghdabadi, R. (2014), "An analytical solution for shape-memorypolymer Euler-Bernoulli beams under bending", Int. J. Mech. Sci., 84, 84-90. https://doi.org/10.1016/j.ijmecsci.2014.04.009
  3. Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Phys., 34(5), 1475-1477. https://doi.org/10.1063/1.1729603
  4. Campbell, D., Mallick, K. and Lake, M. (2004), "A Study of the Compession Mechanics of Soft-Resin Composites", Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, CA, USA, April.
  5. Cho, J.W., Kim, J.W., Jung, Y.C. and Goo, N.S. (2005), "Electroactive shape-memory polyurethane composites incorporating carbon nanotubes", Macromol. Rapid Commun., 26(5), 412-416. https://doi.org/10.1002/marc.200400492
  6. Feldkamp, D.M. and Rousseau, I.A. (2010), "Effect of the Deformation Temperature on the Shape-Memory Behavior of Epoxy Networks", Macromol. Mater. Eng., 295(8), 726-734. https://doi.org/10.1002/mame.201000035
  7. Gao, J., Chen, W., Yu, B., Fan, P., Zhao, B., Hu, J., Zhang, D., Fang, G. and Peng, F. (2019), "Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite", Compos. Part B: Eng., 159, 336-345. https://doi.org/10.1016/j.compositesb.2018.09.029
  8. Ghosh, P. and Srinivasa, A. (2011), "Modeling and parameter optimization of the shape memory polymer response", Mech. Mater.
  9. Ghosh, P., Reddy, J.N. and Srinivasa, A.R. (2013), "Development and implementation of a beam theory model for shape memory polymers", Int. J. Solids Struct., 50(3-4), 595-608. https://doi.org/10.1016/j.ijsolstr.2012.10.024
  10. Gu, J., Leng, J. and Sun, H. (2017), "A constitutive model for amorphous shape memory polymers based on thermodynamics with internal state variables", Mech. Mater., 111, 1-14. https://doi.org/10.1016/j.mechmat.2017.04.008
  11. Gu, J., Xie, Z., Wang, S., Sun, H. and Zhang, X. (2018), "Thermo-mechanical modeling of woven fabric reinforced shape memory polymer composites", Mech. Adv. Mater. Struct., 26(12), 1042-1052. https://doi.org/10.1080/15376494.2018.1430266
  12. Gu, J., Leng, J., Sun, H., Zeng, H. and Cai, Z. (2019), "Thermomechanical constitutive modeling of fiber reinforced shape memory polymer composites based on thermodynamics with internal state variables", Mech. Mater., 130, 9-19. https://doi.org/10.1016/j.mechmat.2019.01.004
  13. Guo, J., Wang, Z., Tong, L. and Liang, W. (2016), "Effects of short carbon fibres and nanoparticles on mechanical, thermal and shape memory properties of SMP hybrid nanocomposites", Compos. Part B: Eng., 90, 152-159. https://doi.org/10.1016/j.compositesb.2015.12.010
  14. Han, X.J., Dong, Z.Q., Fan, M.M., Liu, Y., Li, J.H., Wang, Y.F., Yuan, Q.J., Li, B.J. and Zhang, S. (2012), "pH-induced shape-memory polymers", Macromol. Rapid Commun., 33(12), 1055-1060. https://doi.org/10.1002/marc.201200153
  15. Hassanzadeh-Aghdam, M.K., Ansari, R. and Mahmoodi, M.J. (2019), "Thermo-mechanical properties of shape memory polymer nanocomposites reinforced by carbon nanotubes", Mech. Mater., 129, 80-98. https://doi.org/10.1016/j.mechmat.2018.11.009
  16. He, Y., Li, Y., Liu, Z. and Liew, K.M. (2017), "Buckling analysis and buckling control of thin films on shape memory polymer substrate", Eur. J. Mech.-A/Solids, 66, 356-369. https://doi.org/10.1016/j.euromechsol.2017.08.006
  17. Heuwers, B., Quitmann, D., Hoeher, R., Reinders, F.M., Tiemeyer, S., Sternemann, C., Tolan, M., Katzenberg, F. and Tiller, J.C. (2013), "Stress-Induced Stabilization of Crystals in Shape Memory Natural Rubber", Macromol. Rapid Commun., 34(2), 180-184. https://doi.org/10.1002/marc.201200594
  18. Jani, J.M., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Des., 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
  19. Kausar, A. (2016), "Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: Physical properties and thermoresponsive shape-memory behavior", Int. J. Polym. Anal. Characteriz., 21(4), 348-358. https://doi.org/10.1080/1023666X.2016.1156911
  20. Koerner, H., Strong, R.J., Smith, M.L., Wang, D.H., Tan, L.S., Lee, K.M., White, T.J. and Vaia, R.A. (2013), "Polymer design for high temperature shape memory: Low crosslink density polyimides", Polym., 54(1), 391-402. https://doi.org/10.1016/j.polymer.2012.11.007
  21. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, Int. J., 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501
  22. Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., Int. J., 27(2), 199-222. https://doi.org/10.12989/sem.2007.27.2.199
  23. Lan, X., Liu, Y., Lv, H., Wang, X., Leng, J. and Du, S. (2009), "Fiber reinforced shape-memory polymer composite and its application in a deployable hinge", Smart Mater. Struct., 18(2), 024002. https://doi.org/10.1088/0964-1726/18/2/024002
  24. Lan, X., Liu, L., Liu, Y., Leng, J. and Du, S. (2014), "Post microbuckling mechanics of fibre-reinforced shape-memory polymers undergoing flexure deformation", Mech. Mater., 72, 46-60. https://doi.org/10.1016/j.mechmat.2013.05.012
  25. Lendlein, A., Jiang, H., Junger, O. and Langer, R. (2005), "Light-induced shape-memory polymers", Nature, 434(7035), 879-882. https://doi.org/10.1038/nature03496
  26. Leng, J., Lan, X., Liu, Y. and Du, S. (2011), "Shape-memory polymers and their composites: stimulus methods and applications", Progress Mater. Sci., 56(7), 1077-1135. https://doi.org/10.1016/j.pmatsci.2011.03.001
  27. Li, F., Liu, L., Lan, X., Zhou, X., Bian, W., Liu, Y. and Leng, J. (2016), "Preliminary design and analysis of a cubic deployable support structure based on shape memory polymer composite", Int. J. Smart Nano Mater., 7(2), 106-118. https://doi.org/10.1080/19475411.2016.1212948
  28. Li, F., Scarpa, F., Lan, X., Liu, L., Liu, Y. and Leng, J. (2019), "Bending shape recovery of unidirectional carbon fiber reinforced epoxy-based shape memory polymer composites", Compos. Part A: Appl. Sci. Manuf., 116, 169-179. https://doi.org/10.1016/j.compositesa.2018.10.037
  29. Liu, Y., Gall, K., Dunn, M.L. and McCluskey, P. (2003), "Thermomechanical recovery couplings of shape memory polymers in flexure", Smart Mater. Struct., 12(6), 947. https://doi.org/10.1088/0964-1726/12/6/012
  30. Liu, Y., Du, H., Liu, L. and Leng, J. (2014), "Shape memory polymers and their composites in aerospace applications: a review", Smart Mater. Struct., 23(2), 023001. https://doi.org/10.1088/0964-1726/23/2/023001
  31. Lu, J., Arsalan, A., Dong, Y., Zhu, Y., Qian, C., Wang, R., Cuilan, C., Fu, Y., Ni, Q.Q. and Ali, K.N. (2017), "Shape memory effect and recovery stress property of carbon nanotube/waterborne epoxy nanocomposites investigated via TMA", Polym. Test., 59, 462-469. https://doi.org/10.1016/j.polymertesting.2017.03.001
  32. Mahieux, C.A. and Reifsnider, K.L. (2001), "Property modeling across transition temperatures in polymers: a robust stiffness-temperature model", Polymer, 42(7), 3281-3291. https://doi.org/10.1106/009524402022348
  33. Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M. and Lendlein, A. (2006), "Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers", Proceedings of the National Academy of Sciences, 103(10), 3540-3545. https://doi.org/10.1073/pnas.0600079103
  34. Mu, T., Liu, L., Lan, X., Liu, Y. and Leng, J. (2018), "Shape memory polymers for composites", Compos. Sci. Technol., 160, 169-198. https://doi.org/10.1016/j.compscitech.2018.03.018
  35. Nurly, H., Yan, Q., Song, B. and Shi, Y. (2019), "Effect of carbon nanotubes reinforcement on the polyvinyl alcohol-polyethylene glycol double-network hydrogel composites: A general approach to shape memory and printability", Eur. Polym. J., 110, 114-122. https://doi.org/10.1016/j.eurpolymj.2018.11.006
  36. Oh, S.H., Kang, S.G. and Lee, J.H. (2006), "Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one", J. Mater. Sci.: Mater. Med., 17(2), 131-137. https://doi.org/10.1007/s10856-006-6816-2
  37. Patel, K.K. and Purohit, R. (2019), "Improved shape memory and mechanical properties of microwaveinduced thermoplastic polyurethane/Graphene nanoplatelets composites", Sensors Actuat. A: Phys., 285, 17-24. https://doi.org/10.1016/j.sna.2018.10.049
  38. Pearce, G.M.K., Mukkavilli, A., Chowdhury, N.T., Lim, S.H., Prusty, B.G., Crosky, A. and Kelly, D.W. (2019), "Strain Invariant Failure Theory-Part 1: An extensible framework for predicting the mechanical performance of fibre reinforced polymer composites", Compos. Struct., 209, 1022-1034. https://doi.org/10.1016/j.compstruct.2018.03.084
  39. Poilane, C., Delobelle, P., Lexcellent, C., Hayashi, S. and Tobushi, H. (2000), "Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests", Thin Solid Films, 379(1-2), 156-165. https://doi.org/10.1016/S0040-6090(00)01401-2
  40. Qi, H.J., Nguyen, T.D., Castro, F., Yakacki, C.M. and Shandas, R. (2008), "Finite deformation thermomechanical behavior of thermally induced shape memory polymers", J. Mech. Phys. Solids, 56(5), 1730-1751. https://doi.org/10.1016/j.jmps.2007.12.002
  41. Quade, D., Jana, S., Morscher, G., Kannan, M. and McCorkle, L. (2018), "The effects of fiber orientation and adhesives on tensile properties of carbon fiber reinforced polymer matrix composite with embedded nickel-titanium shape memory alloys", Compos. Part A: Appl. Sci. Manuf., 114, 269-277. https://doi.org/10.1016/j.compositesa.2018.08.019
  42. Quitmann, D., Gushterov, N., Sadowski, G., Katzenberg, F. and Tiller, J.C. (2014), "Environmental memory of polymer networks under stress", Adv. Mater., 26(21), 3441-3444. https://doi.org/10.1002/adma.201305698
  43. Reddy, J.N. (2014), An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, OUP, Oxford, UK.
  44. Rodriguez, J.N., Yu, Y.J., Miller, M.W., Wilson, T.S., Hartman, J., Clubb, F.J., Gentry, B. and Maitland, D.J. (2012), "Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms", Annals Biomed. Eng., 40(4), 883-897. https://doi.org/10.1007/s10439-011-0468-1
  45. Shegokar, N.L. and Lal, A. (2013), "Stochastic nonlinear bending response of piezoelectric functionally graded beam subjected to thermoelectromechanical loadings with random material properties", Compos. Struct., 100, 17-33. https://doi.org/10.1142/S2047684117500208
  46. Shen, G.L., Hu, G. and Liu, B. (2006), Mechanics of Composite Materials, Science and Technology, Beijing, China.
  47. Shi, G., Lam, K.Y. and Tay, T.E. (1998), "On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element", Compos. Struct., 41(2), 159-165. https://doi.org/10.1016/j.ijsolstr.2007.11.005
  48. Su, X. and Peng, X. (2018), "A 3D finite strain viscoelastic constitutive model for thermally induced shape memory polymers based on energy decomposition", Int. J. Plastic., 110, 166-182. https://doi.org/10.1016/j.ijplas.2018.07.002
  49. Vernon, L.B. and Vernon, H.M. (1941), "Process of Manufacturing Articles of Thermoplastic Synthetic Resins", US Patent issued in March 1941.
  50. Wang, Z.D. and Li, Z.F. (2011), "Theoretical analysis of the deformation of SMP sandwich beam in flexure", Arch. Appl. Mech., 81(11), 1667-1678. https://doi.org/10.1007/s00419-011-0510-7
  51. Wang, Z., Li, Z., Xiong, Z. and Wang, L. (2010), "Theoretical studies on microbuckling mode of elastic memory composites", Acta Mechanica Solida Sinica, 23(1), 20-28. https://doi.org/10.1016/S0894-9166(10)60003-1
  52. Wang, E., Dong, Y., Islam, M.Z., Yu, L., Liu, F., Chen, S., Qi, X., Zhu, Y., Fu, Y., Xu, Z. and Hu, N. (2019a), "Effect of graphene oxide-carbon nanotube hybrid filler on the mechanical property and thermal response speed of shape memory epoxy composites", Compos. Sci. Technol., 169, 209-216. https://doi.org/10.1016/j.compscitech.2018.11.022
  53. Wang, E., Wu, Y., Islam, M.Z., Dong, Y., Zhu, Y., Liu, F., Fu, Y., Xu, Z. and Hu, N. (2019b), "A novel reduced graphene oxide/epoxy sandwich structure composite film with thermo-, electro-and lightresponsive shape memory effect", Mater. Lett., 238, 54-57. https://doi.org/10.1016/j.matlet.2018.11.138
  54. Ware, T., Simon, D., Hearon, K., Liu, C., Shah, S., Reeder, J., Khodaparast, N., Kilgard, M.P., Maitland, D.J., Rennaker, R.L. and Voit, W.E. (2012), "Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces", Macromol. Mater. Eng., 297(12), 1193-1202. https://doi.org/10.1002/mame.201200241
  55. Westbrook, K.K., Kao, P.H., Castro, F., Ding, Y. and Qi, H.J. (2011), "A 3D finite deformation constitutive model for amorphous shape memory polymers: a multi-branch modeling approach for nonequilibrium relaxation processes", Mech. Mater., 43(12), 853-869. https://doi.org/10.1016/j.mechmat.2011.09.004
  56. Xie, T. and Rousseau, I.A. (2009), "Facile tailoring of thermal transition temperatures of epoxy shape memory polymers", Polymer, 50(8), 1852-1856. https://doi.org/10.1016/j.polymer.2009.02.035
  57. Yang, D. (2000), "Shape memory alloy and smart hybrid composites-advanced materials for the 21st Century", Mater. Des., 21(6), 503-505. https://doi.org/10.1016/S0261-3069(00)00008-X
  58. Zeng, H., Leng, J., Gu, J. and Sun, H. (2018), "A thermoviscoelastic model incorporated with uncoupled structural and stress relaxation mechanisms for amorphous shape memory polymers", Mech. Mater., 124, 18-25. https://doi.org/10.1016/j.mechmat.2018.05.010
  59. Zhang, C.S. and Ni, Q.Q. (2007), "Bending behavior of shape memory polymer based laminates", Compos. Struct., 78(2), 153-161. https://doi.org/10.1016/j.compstruct.2005.08.029
  60. Zhang, J., Dui, G. and Liang, X. (2018), "Revisiting the micro-buckling of carbon fibers in elastic memory composite plates under pure bending", In. J. Mech. Sci., 136, 339-348. https://doi.org/10.1016/j.ijmecsci.2017.12.018
  61. Zhou, J., Li, H., Liu, W., Dugnani, R., Tian, R., Xue, W., Chen, Y., Guo, Y., Duan, H. and Liu, H. (2016), "A facile method to fabricate polyurethane based graphene foams/epoxy/carbon nanotubes composite for electro-active shape memory application", Compos. Part A: Appl. Sci. Manuf., 91, 292-300. https://doi.org/10.1016/j.compositesa.2016.10.021
  62. Zia, Y.B. and Khan, A.A. (2018), "Comparison of various higher order shear deformation theories for static and modal analysis of composite beam", Proceedings of IOP Conference Series: Materials Science and Engineering, 377, 012170. https://doi.org/10.1088/1757-899X/377/1/012170