DOI QR코드

DOI QR Code

Embryotoxic and Teratogenic Effects of Tartrazine in Rats

  • Hashem, Mohamed Mohammed (Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University) ;
  • Abd-Elhakim, Yasmina Mohammed (Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University) ;
  • Abo-EL-Sooud, Khaled (Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University) ;
  • Eleiwa, Mona M.E. (Department of Botany, Faculty of Science, Cairo University)
  • Received : 2018.06.28
  • Accepted : 2018.08.30
  • Published : 2019.01.15

Abstract

Tartrazine (TAZ) is one of the most commonly used artificial dyes for foods and drugs. We determined the effect of TAZ on fetal development by examining morphological, visceral, and skeletal malformations in rat fetuses following daily oral administration of TAZ to pregnant Wistar rats at the 6th-15th day of gestation. TAZ at 0.45 and 4.5 mg/kg induced 6.0 and 7.1% fetal resorptions, as well as 10.0 and 10.5% fetal mortality, respectively. Fetal body weight and length were significantly lower in the groups treated with TAZ at 0.45 ($3.97{\pm}0.21g$ and $27.3{\pm}0.54mm$, respectively) and 4.5 mg/kg ($3.48{\pm}0.15g$ and $23.22{\pm}1.02mm$, respectively) than in the control group ($4.0{\pm}0.15g$ and $30.01{\pm}0.42mm$, respectively). TAZ at 0.45 and 4.5 mg/kg induced hepatic damage (20 and 33.3%, respectively), dark brown pigmentation due to hemosiderin in the splenic parenchyma (16.7 and 21.7%, respectively), as well as destructed and necrotic renal tubules (16.7 and 26.7%, respectively) in the fetuses. Moreover, TAZ at 0.45 and 4.5 mg/kg caused one or more missing coccygeal vertebrae (20 and 40%, respectively), missing sternebrae (6 and 10%, respectively), missing hind limbs (24 and 4%, respectively), and irregular ribs (16 and 20, respectively) in the fetuses. We concluded that TAZ has embryotoxic and teratogenic potentials in rats.

Keywords

References

  1. Tanaka, T., Takahashi, O., Oishi, S. and Ogata, A. (2008) Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reprod. Toxicol., 26, 156-163. https://doi.org/10.1016/j.reprotox.2008.07.001
  2. Allam, K.V. and Kumar, G.P. (2011) Colorants-the cosmetics for the pharmaceutical dosage forms. Int. J. Pharm. Pharm. Sci., 3, 9.
  3. Mehedi, N., Ainad-Tabet, S., Mokrane, N., Addou, S., Zaoui, C., Kheroua, O. and Saidi, D. (2009) Reproductive toxicology of tartrazine (FD and C Yellow No. 5) in Swiss albino mice. Am. J. Pharmacol. Toxicol., 4, 130-135. https://doi.org/10.3844/ajptsp.2009.130.135
  4. Khayyat, L., Essawy, A., Sorour, J. and Soffar, A. (2017) Tartrazine induces structural and functional aberrations and genotoxic effects in vivo. PeerJ, 5, e3041. https://doi.org/10.7717/peerj.3041
  5. Amin, K., Abdel Hameid, H., 2nd. and Abd Elsttar, A.H. (2010) Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food Chem. Toxicol., 48, 2994-2999. https://doi.org/10.1016/j.fct.2010.07.039
  6. Diacu, E. and Ene, C.P. (2009) Simultaneous determination of tartrazine and sunset yellow in soft drinks by liquid chromatography. Rev. Chim., 60, 745-749.
  7. Mpountoukas, P., Pantazaki, A., Kostareli, E., Christodoulou, P., Kareli, D., Poliliou, S., Mourelatos, C., Lambropoulou, V. and Lialiaris, T. (2010) Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem. Toxicol., 48, 2934-2944. https://doi.org/10.1016/j.fct.2010.07.030
  8. Tanaka, T. (2006) Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem. Toxicol., 44, 179-187. https://doi.org/10.1016/j.fct.2005.06.011
  9. Ardern, K.D. and Ram, F.S. (2001) Tartrazine exclusion for allergic asthma. Cochrane Database Syst. Rev., (4), CD000460.
  10. Mohamed, A.A.R., Galal, A.A. and Elewa, Y.H. (2015) Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochemica, 117, 649-658. https://doi.org/10.1016/j.acthis.2015.07.002
  11. Abd-Elhakim, Y.M., Hashem, M.M., El-Metwally, A.E., Anwar, A., Abo-El-Sooud, K., Moustafa, G.G. and Ali, H.A. (2018) Comparative haemato-immunotoxic impacts of longterm exposure to tartrazine and chlorophyll in rats. Int. Immunopharmacol., 63, 145-154. https://doi.org/10.1016/j.intimp.2018.08.002
  12. Boussada, M., Lamine, J., Bini, I., Abidi, N., Lasrem, M., El-Fazaa, S. and El-Golli, N. (2017) Assessment of a subchronic consumption of tartrazine (E102) on sperm and oxidative stress features in Wistar rat. Int. Food Res. J., 24, 1473-1481.
  13. Yang, S., Jia, Z.C., Chen, J.Y., Hu, J.X. and Zhang, L.S. (2014) Toxic effects of atrazine on reproductive system of male rats. Biomed. Environ. Sci., 27, 281-288. https://doi.org/10.3967/bes2014.050
  14. Rowe, K.S. and Rowe, K.J. (1994) Synthetic food coloring and behavior: a dose response effect in a double-blind, placebo- controlled, repeated-measures study. J. Pediatr., 125, 691-698. https://doi.org/10.1016/S0022-3476(06)80164-2
  15. Schab, D.W. and Trinh, N.-H.T. (2004) Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. J. Dev. Behav. Pediatr., 25, 423-434. https://doi.org/10.1097/00004703-200412000-00007
  16. Stevens, L.J., Burgess, J.R., Stochelski, M.A. and Kuczek, T. (2014) Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children. Clinic. Pediatr., 53, 133-140. https://doi.org/10.1177/0009922813502849
  17. Borzelleca, J., Goldenthal, E., Wazeter, F. and Schardein, J. (1987) Evaluation of the potential teratogenicity of FD & C Blue No. 2 in rats and rabbits. Food Chem. Toxicol., 25, 495-497. https://doi.org/10.1016/0278-6915(87)90199-2
  18. Borzelleca, J. and Hallagan, J. (1990) Multigeneration study of FD & C Red No. 3 (erythrosine) in Sprague-Dawley rats. Food Chem.Toxicol., 28, 813-819. https://doi.org/10.1016/0278-6915(90)90054-Q
  19. Collins, T., Black, T., O'Donnell Jr., M., Shackelford, M. and Bulhack, P. (1993) Teratogenic potential of FD & C Red No. 3 when given in drinking water. Food Chem. Toxicol., 31, 161-167. https://doi.org/10.1016/0278-6915(93)90089-H
  20. Collins, T.F.X., Black, T.N., Brown, L.H. and Bulhack, P. (1990) Study of the teratogenic potential of FD & C Yellow No. 5 when given by gavage to rats. Food Chem. Toxicol., 28, 821-827. https://doi.org/10.1016/0278-6915(90)90055-R
  21. Joshi, V. and Katti, P. (2018) Developmental Toxicity Assay for Food Additive Tartrazine Using Zebrafish (Danio rerio) Embryo Cultures. Int. J. Toxicol., 37, 38-44. https://doi.org/10.1177/1091581817735227
  22. Nair, A.B. and Jacob, S. (2016) A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm., 7, 27-31. https://doi.org/10.4103/0976-0105.177703
  23. McElhatton, P. (1999) Principles of teratogenicity. Curr. Obstet. Gynaecol., 9, 163-169. https://doi.org/10.1016/S0957-5847(99)90060-4
  24. Garry, V.F. and Truran, P. (2017) Chapter 62 - Teratogenicity A2 in Reproductive and Developmental Toxicology (2nd Edition) (Gupta, R.C. Ed.). Academic Press, pp. 1167-1181.
  25. Ariyuki, F., Ishihara, H., Higaki, K. and Yasuda, M. (1982) A study of fetal growth retardation in teratological tests: relationship between body weight and ossification of the skeleton in rat fetuses. Teratology, 26, 263-267. https://doi.org/10.1002/tera.1420260308
  26. Manson, J.M. and Kang, Y.J. (1994) Test methods for assessing female reproductive and developmental toxicology in Principles and Methods of Toxicology (3rd edition) (Hayes, A.W. Ed.). Raven Press, New York, pp. 989-1034.
  27. Fisher, B., Rose, N.C. and Carey, J.C. (2008) Principles and practice of teratology for the obstetrician. Clin. Obstet. Gynecol., 51, 106-118. https://doi.org/10.1097/GRF.0b013e318161d2c8
  28. Shapiro, S.S. and Wilk, M.B. (1965) An analysis of variance test for normality (complete samples). Biometrika, 52, 591-611. https://doi.org/10.1093/biomet/52.3-4.591
  29. Abd-Elhakim, Y.M., Hashem, M.M., Anwar, A., El-Metwally, A.E., Abo-El-Sooud, K., Moustafa, G.G., Mouneir, S.M. and Ali, H.A. (2018) Effects of the food additives sodium acid pyrophosphate, sodium acetate and citric acid on hemato-immunological pathological biomarkers in rats: Relation to PPAR-${\alpha}$, PPAR-${\gamma}$ and tnf${\alpha}$ signaling pathway. Environ. Toxicol. Pharmacol., 62, 98-106. https://doi.org/10.1016/j.etap.2018.07.002
  30. Abd-Elhakim, Y.M., Anwar, A., Hashem, M.M., Moustafa, G.G. and Abo-El-Sooud, K. (2018) Sodium acetate, sodium acid pyrophosphate, and citric acid impacts on isolated peripheral lymphocyte viability, proliferation, and DNA damage. J. Biochem. Mol. Toxicol., 32, e22171. https://doi.org/10.1002/jbt.22171
  31. Abo-EL-Sooud, K., Hashem, M.M., Badr, Y.A., Eleiwa, M.M., Gab-Allaha, A.Q., Abd-Elhakim, Y.M. and Bahy-ELDien, A. (2018) Assessment of hepato-renal damage and genotoxicity induced by long-term exposure to five permitted food additives in rats. Environ. Sci. Pollut. Res. Int., 25, 26341-26350. https://doi.org/10.1007/s11356-018-2665-z
  32. Abo-EL-Sooud, K., Hashem, M.M., ElHakim, Y.M.A., Kamel, G.M. and Gab-Allaha, A.Q. (2018) Effect of butylated hydroxyl toluene on the immune response of Rift Valley fever vaccine in a murine model. Int. Imunopharmacol., 62, 165-169. https://doi.org/10.1016/j.intimp.2018.07.004
  33. El-Wahab, H.M. and Moram, G.S. (2013) Toxic effects of some synthetic food colorants and/or flavor additives on male rats. Toxicol. Ind. Health, 29, 224-232. https://doi.org/10.1177/0748233711433935
  34. Syme, M.R., Paxton, J.W. and Keelan, J.A. (2004) Drug transfer and metabolism by the human placenta. Clin. Pharmacokinet., 43, 487-514. https://doi.org/10.2165/00003088-200443080-00001
  35. Briggs, G.G., Freeman, R.K. and Yaffe, S.J. (2012) Drugs in Pregnancy and Lactation: a Reference Guide to Fetal and Neonatal Risk, Lippincott Williams & Wilkins.
  36. Selderslaghs, I.W., Van Rompay, A.R., De Coen, W. and Witters, H.E. (2009) Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reprod. Toxicol., 28, 308-320. https://doi.org/10.1016/j.reprotox.2009.05.004
  37. Chung, M.-K., Yu, W.-J., Lee, J.-S. and Lee, J.-H. (2013) Embryotoxicity and toxicokinetics of the antimalarial artesunate in rats. Toxicol. Res., 29, 27-34. https://doi.org/10.5487/TR.2013.29.1.027
  38. McQueen, E. (1972) Teratogenicity of drugs. New Zealand Vet. J., 20, 156-159. https://doi.org/10.1080/00480169.1972.34038
  39. He, Q., Liu, J., Liu, X., Li, G., Deng, P., Liang, J. and Chen, D. (2018) Sensitive and selective detection of tartrazine based on $TiO_2$-electrochemically reduced graphene oxide composite-modified electrodes. Sensors, 18, 1911. https://doi.org/10.3390/s18061911
  40. Walton, K., Walker, R., Van de Sandt, J., Castell, J., Knapp, A., Kozianowski, G., Roberfroid, M. and Schilter, B. (1999) The application of in vitro data in the derivation of the acceptable daily intake of food additives. Food Chem. Toxicol., 37, 1175-1197. https://doi.org/10.1016/S0278-6915(99)00107-6
  41. World Health Organization & Joint FAO/WHO Expert Committee on Food Additives (2016) Evaluation of Certain Food Additives: Eighty-Second Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series 1000. World Health Organization. Available from: http://www.who.int/iris/handle/10665/250277/.
  42. Stevenson, D.D. (2008) Tartrazine, azo, and non-azo dyes in Food Allergy. Adverse Reactions to Foods and Food Additives (4th edition) (Metcalfe, D.D., Sampson, H.A. and Simon, R.D. Eds.). Blackwell Publishing, New York, pp. 377-385.
  43. Paget, G. and Barnes, G. (1964) Evaluation of Drug Activities (vol. 1), Academic Press, London.
  44. Ishidate, M., Jr., Sofuni, T., Yoshikawa, K., Hayashi, M., Nohmi, T., Sawada, M. and Matsuoka, A. (1984) Primary mutagenicity screening of food additives currently used in Japan. Food Chem. Toxicol., 22, 623-636. https://doi.org/10.1016/0278-6915(84)90271-0
  45. Anita, K., Mehta, V., Gupta, U., Prabhu, S. and Bapna, J. (1995) Methods for teratogenicity testing-existing and future models. Indian J. Pharmacol., 27, 204.
  46. Raymond, E., Sun, D., Chen, S.-F., Windle, B. and Von Hoff, D.D. (1996) Agents that target telomerase and telomeres. Curr. Opin. Biotechnol., 7, 583-591. https://doi.org/10.1016/S0958-1669(96)80068-1
  47. Hashem, M.M., Atta, A.H., Arbid, M.S., Nada, S.A. and Asaad, G.F. (2010) Immunological studies on Amaranth, Sunset Yellow and Curcumin as food colouring agents in albino rats. Food Chem. Toxicol., 48, 1581-1586. https://doi.org/10.1016/j.fct.2010.03.028
  48. Himri, I., Bellahcen, S., Souna, F., Belmekki, F., Aziz, M., Bnouham, M., Zoheir, J., Berkia, Z., Mekhfi, H. and Saalaoui, E. (2011) A 90-day oral toxicity study of tartrazine, a synthetic food dye, in wistar rats. Int. J. Pharm. Pharm. Sci., 3, 159-169.
  49. Chung, K.T., Stevens, S.E., Jr. and Cerniglia, C.E. (1992) The reduction of azo dyes by the intestinal microflora. Crit. Rev. Microbiol., 18, 175-190. https://doi.org/10.3109/10408419209114557
  50. Rotimi, O.A., Rotimi, S.O., Oluwafemi, F., Ademuyiwa, O. and Balogun, E.A. (2018) Oxidative stress in extrahepatic tissues of rats co-exposed to aflatoxin B1 and low protein diet. Toxicol. Res., 34, 211. https://doi.org/10.5487/TR.2018.34.3.211
  51. Salimi, A., Talatappe, B.S. and Pourahmad, J. (2017) Xylene induces oxidative stress and mitochondria damage in isolated human lymphocytes. Toxicol. Res., 33, 233. https://doi.org/10.5487/TR.2017.33.3.233
  52. Fallahzadeh, A.R., Rezaei, Z., Rahimi, H.R., Barmak, M.J., Sadeghi, H., Mehrabi, S., Rabani, S.M., Kashani, I.R., Barati, V. and Mahmoudi, R. (2017) Evaluation of the effect of pentoxifylline on cisplatin-induced testicular toxicity in rats. Toxicol. Res., 33, 255. https://doi.org/10.5487/TR.2017.33.3.255
  53. Amraoui, W., Adjabi, N., Bououza, F., Boumendjel, M., Taibi, F., Boumendjel, A., Abdennour, C. and Messarah, M. (2018) Modulatory role of selenium and vitamin E, natural antioxidants, against bisphenol A-induced oxidative stress in wistar albinos rats. Toxicol. Res., 34, 231. https://doi.org/10.5487/TR.2018.34.3.231
  54. Reyes, F.G., Valim, M.F. and Vercesi, A.E. (1996) Effect of organic synthetic food colours on mitochondrial respiration. Food Addit. Contam., 13, 5-11. https://doi.org/10.1080/02652039609374376