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INTRODUCTION
Epilepsy is a chronic neurological disorder affecting about 50 

million people worldwide [1]. It is a group of diseases character-
ized by spontaneous recurrent seizures, suggesting that epilepsy 
is a spectrum disorder [2,3]. Although multiple causes including 
high fever, brain tumor, stroke, and traumatic brain injury can 
contribute to epilepsy [4], no specific, unified diagnostic tools 
have been developed to differentiate the types of epilepsy. Cur-
rently, electroencephalography (EEG) is the principal test used 
to identify seizures, with the aid of brain imaging modalities [5]. 
EEG is a non-invasive test that can depict macroscopic electro-
physiologic activities in the brain, helping to detect seizures and 

spikes and localize seizure foci [6-9]. Due to its superior temporal 
resolution, low cost, and lack of safety restrictions, EEG is an es-
sential resource in both epilepsy clinics and research, even though 
it has poor spatial resolution and high noise.

Approximately 40% of epilepsy patients are refractory to phar-
macological treatments [10]. To find clues to a cure for epilepsy, 
various animal models of epilepsy have been developed to reca-
pitulate abnormal epileptiform discharges and investigate critical 
biochemical and genetic factors during epileptogenesis [11]. EEG 
monitoring is also valuable for examining diverse types of sei-
zures in experimental epileptic animals. Although clinical scalp 
EEG datasets are limited by factors such as low signal intensity 
or high noise in EEG signals, invasive electrocorticography can 
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ABSTRACT Manually reviewing electroencephalograms (EEGs) is labor-intensive 
and demands automated seizure detection systems. To construct an efficient and 
robust event detector for experimental seizures from continuous EEG monitoring, we 
combined spectral analysis and deep neural networks. A deep neural network was 
trained to discriminate periodograms of 5-sec EEG segments from annotated con-
vulsive seizures and the pre- and post-EEG segments. To use the entire EEG for train-
ing, a second network was trained with non-seizure EEGs that were misclassified as 
seizures by the first network. By sequentially applying the dual deep neural networks 
and simple pre- and post-processing, our autodetector identified all seizure events 
in 4,272 h of test EEG traces, with only 6 false positive events, corresponding to 100% 
sensitivity and 98% positive predictive value. Moreover, with pre-processing to re-
duce the computational burden, scanning and classifying 8,977 h of training and test 
EEG datasets took only 2.28 h with a personal computer. These results demonstrate 
that combining a basic feature extractor with dual deep neural networks and rule-
based pre- and post-processing can detect convulsive seizures with great accuracy 
and low computational burden, highlighting the feasibility of our automated seizure 
detection algorithm.
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be easily applied in experimental settings, allowing more ac-
curate measurement of abnormal brain activity. Moreover, long-
term EEG recordings up to several months covering multiple 
seizure clusters can be collected in an experimental setting. These 
advantages enable researchers to better assess the epileptogenic 
potential and individual variations of each seizure pattern. How-
ever, large data volumes from long-term EEG recordings require 
extensive labor to review and may result in unexpected omission 
of seizures. Therefore, in the present study, we developed an au-
tomated seizure event detection algorithm based on deep neural 
networks for long-term experimental EEG recordings.

The difficulties in analyzing EEGs come from their non-
stationary and non-linear nature [12,13]. To overcome these 
obstacles, many different feature extraction methods have been 
devised for automated seizure detector based on classic machine 
learning [14]. However, since deep learning is a representation 
learning system that can extract innate features necessary for 
distinguishing differences among datasets [15], complex feature 
extraction processes can be avoided when developing EEG classi-
fiers. Thus, in this study, we investigated whether we can create a 
deep learning-based system with high sensitivity and specificity 
for detecting seizure events from EEG traces. To achieve the best 
seizure detection rate and low computational cost, we devised two 
consecutive deep neural network classifiers coupled with a few 
pre- and post-processing schemes. Our automated seizure event 
detector could identify all seizure events (no false negative [FN] 
results), with only 4 false positive (FP) events for the training da-
taset and 6 for the test dataset. Moreover, it could inspect all EEG 
traces (8,977 h) in only 2.28 h with a personal computer. Our new 
algorithm showed high fidelity seizure detection with low com-
puting cost that can facilitate epilepsy research by lowering the 
labor intensity and entry barrier for researchers studying epilepsy.

METHODS

Animals

All mice were bred and housed in an animal facility with a 12-h 
light, 12-h dark cycle with food and water ad libitum. The ani-
mal experiments were approved by the Ethics Committee of the 
Catholic University of Korea and were carried out in accordance 
with the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals (NIH Publications No. 80-23). To include 
various convulsive seizures, three different mouse strains (non-
transgenic, conditional knockout, and reporter lines) were used. 
Male C57BL/6N mice were purchased from Envigo Laboratories 
(Koatech, Pyeongtaek, Korea). Nestin-Cre;Lin28A+/+ (Lin28A 
wild-type) and Nestin-Cre;Lin28AloxP/loxP (Lin28A conditional 
knockout; cKO) mice were generated as conditional knockouts. 
For a reporter mouse line, Prox1-eGFP was used. Transgenic 
mice were genotyped by PCR with specific primers to detect cre (5’ 

GGT CGA TGC AAC GAG TGA TGA GG 3’, 5’ GCT AAG TGC 
CTT CTC TAC ACC TGC G), Lin28A (5’ TCC AAC CAG CAG 
TTT GCA G 3’, 5’ GCA GCT GGT AAG AAG AAA CCT G 3’), 
and eGFP (5’ GAT GTG CCA TAA ATC CCA GAG CCT AT 3’, 5’ 
GGT CGG GGT AGC GGC TGA A 3’). 

Mouse epilepsy model 

The pilocarpine-induced status epilepticus model was generat-
ed as previously described [16,17]. For C57BL/6 mice, epilepsy was 
induced in 2018, and, for the rest of the mice, it was induced in 
2016. Mice at 6 weeks old were administered scopolamine methyl 
nitrate (intraperitoneally [i.p.], 2 mg/kg, Sigma-Aldrich S2250; 
Sigma-Aldrich, St. Louis, MO, USA) and terbutaline hemisulfate 
salt (i.p., 2 mg/kg, Sigma-Aldrich T2528) to inhibit peripheral ef-
fects of pilocarpine and dilate the respiratory tract, respectively. 
Thirty min later, pilocarpine hydrochloride (i.p., Sigma-Aldrich 
P6503) was injected. C57BL/6N and male Lin28A cKO mice re-
ceived 280 mg/kg; male Prox1-eGFP, 285 mg/kg; female Prox1-
eGFP, 295 mg/kg; and female Lin28A cKO mice, 300 mg/kg. In 
an incubator at 28°C to 30°C, acute seizures were behaviorally 
monitored with a modified Racine’s scale [18]. Once status epi-
lepticus began, mice were placed at room temperature for 3 h, 
diazepam (10 mg/kg; Samjin Pharm, Seoul, Korea) was injected 
to terminate the seizure, and mice were returned to the incubator. 
To facilitate recovery, mice were given 5% dextrose (i.p., 1 ml) and 
water-moistened chow. At 2 days after pilocarpine injection, mice 
were returned to their home cages and housed until video/EEG 
monitoring. For sham-manipulated animals, all procedures were 
the same except they were administered normal saline (10 mg/kg) 
instead of pilocarpine.

Video/EEG monitoring 

Video/EEG monitoring was conducted for 2 weeks between 4 
and 7 weeks after pilocarpine injection as previously described 
[19,20]. Specifically, 16 C57BL/6 mice had video/EEG recording 
at 4 to 6 weeks after pilocarpine injection, and 7 Lin28A cKO and 
12 Prox1-eGFP mice were monitored at 5 to 7 weeks after pilo-
carpine injection. One week before starting EEG recording, mice 
were stereotaxically implanted with epidural recording electrodes 
placed at anteroposterior (AP) + 0.1 mm, mediolateral (ML) + 
0.1 mm (reference) and AP – 0.2 mm, ML + 0.22 mm (cortical 
electrode) from bregma. Recording electrodes were connected 
to a wireless EEG transmitter (TA11ETAF10; Data Sciences In-
ternational, New Brighton, MN, USA) placed subcutaneously on 
the back. Mice underwent continuous monitoring by a wireless 
video/EEG monitoring system (Data Sciences International). 
Convulsive seizures were defined by repetitive epileptiform spik-
ing (≥ 3 Hz) that persisted for more than 3 sec and was confirmed 
by video recordings. Seizure activity was marked at the beginning 
and end of each event to train deep neural networks.
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Preparation of datasets and deep neural networks 

EEG data (total 4,704 h) recorded from non-transgenic 
C57BL/6 mice were used as a training set that contained 249 
human-annotated seizure events corresponding to 1 h 52 min. 
The minimal seizure duration was 8.34 sec, and the maximum 
was 61.25 sec. The test set was 4,272 h of EEG recording from 
conditional knockout and reporter mice containing 324 seizure 
events totaling 2 h 35 min. In most studies investigating autode-
tection of seizures, N-fold cross-validation or leave-one-subject-
out cross-validation was used to validate the classification. 
However, we purposely divided the 8,977 h EEG into training 
and test sets based on different genetic background and recording 
period to test the generalization of our classifier. For the selection 
of “seizure” and “non-seizure” datasets for the training, we col-
lected non-seizure data from the 5 min of EEG before and after 
each seizure event (Fig. 1A) because the length of non-seizure 
EEG was 2,500 times longer than seizure EEG traces. As input 
data formats, we tested both raw EEG data and simple frequency-
power distribution for 5-sec EEG segments. Since EEG data 
were collected at 1,000 Hz, raw EEG data had 5,000 data points 
as inputs. On the other hand, frequency-power distribution was 
obtained from periodogram results for 0 to 99 Hz range, result-
ing in 100 data points as inputs. Non-seizure data were split into 
5-sec segments (Fig. 1B) using a 5-sec sliding window with half-
overlapping segments. Seizure data were split into 5-sec segments 
but they were collected every 0.25 sec since seizure data were 
scarce (Fig. 1C). This process multiplied seizure data to minimize 
the size difference between seizure and non-seizure data. Our 
EEG data were not filtered through any band pass or notch filter. 
The only pre-processing applied to the data was the elimination 
of EEG traces containing strong noise signals with an amplitude 

over ± 2.5 mV. Periodograms of 5-sec segments of EEG data were 
obtained with the ‘spectrum’ module (https://github.com/coke-
laer/spectrum) of Python programming language (https://www.
python.org). We did not normalize input data. The deep neural 
networks were constructed and trained with the TensorFlow deep 
learning library (https://www.tensorflow.org). The rectified lin-
ear unit was used as an activation function, and one hot encod-
ing was used to assign groups: (1,0) for seizure and (0,1) for non-
seizure. The training dataset was further split into 90% training 
set and 10% validation set for the validation of training results. 
The network was trained with categorical cross-entropy as the 
loss function with Adam optimizer. The batch size was 250. The 
computer system for training was a personal computer with an 
Intel i7-8700 CPU (Intel, Santa Clara, CA, USA), 16 GB memory 
(Samsung Electronics, Suwon, Korea), and NVIDIA GeForce 
GTX 1080Ti graphics card (NVIDIA, Santa Clara, CA, USA). 
Due to infrequent convulsive seizures in the pilocarpine model of 
epilepsy, the first deep neural network experienced only 0.92% of 
the entire training EEG dataset as the sum of each seizure and its 
pre-/post-segments compose a small portion. Thus, a second deep 
neural network was introduced to exploit the remaining data. The 
entire 4,704 h of training EEG data was split into half-overlapping 
5-sec windows (Fig. 1D), and each segment was classified by the 
first network. The 5-sec segments that were classified by the first 
network as a seizure but did not coincide with the human anno-
tations, i.e., FP results, were defined as new, non-seizure training 
data. The second deep neural network was trained with the new, 
non-seizure training data and the original seizure training data. 
To determine optimal size of hidden layers, different combination 
of network sizes were explored.

Fig. 1. Data set preparation for deep learning. (A) Non-seizure data were obtained from 5 min of electroencephalogram (EEG) before and after each 
seizure. (B) Half overlapping 5-sec sliding windows were used to collect non-seizure data. (C) Five-sec segments per 0.25 sec were collected for seizure 
data to multiply the scarce seizure data. (D) While autodetecting seizure events, the entire EEG was scanned with half overlapping 5-sec sliding win-
dows.
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Algorithm for autodetection of seizure events 

The autodetector for seizure events was built based on the clas-
sifier for 5-sec EEG segments. The autodetection procedure can 
be divided into three steps: pre-processing, classification with 
dual deep neural networks, and post-processing. Pre- and post-
processing algorithms were derived from observing the basic 
properties of convulsive EEG seizure events. Half-overlapping 
5-sec windows were moved through the entire EEG recording 
and provided sequential, 5-sec EEG segments for classification. 
Each 5-sec segment went through the following procedures for 
classification as seizure or non-seizure. Pre-processing was de-
vised to reduce unnecessary computational load. First, EEG trac-
es containing noise with amplitude over ± 2.5 mV were removed. 
Second, because the minimum mean absolute amplitude of 5-sec 
seizure segments was 0.029 mV, any segments with absolute 
mean amplitudes smaller than 0.025 mV were classified as a non-
seizure. The mean absolute amplitude was used to meaningfully 
estimate EEG amplitudes because positive and negative signals in 
original EEG can negate each other if they are not converted to 
absolute values. Pre-processing eliminated about one-third of the 
EEG segments from further processing, significantly reducing 
the computational load. Then, the 0 to 99 Hz periodogram results 
of each 5-sec segment were calculated and fed into the first deep 
neural network. If the first network classified a periodogram as 
a non-seizure event, it was considered a non-seizure event, and 
the next 5-sec segment was analyzed. If the first network judged a 
periodogram as a seizure, it was re-evaluated by the second deep 
neural network. If the second network classified the segment as a 
non-seizure, it was considered a non-seizure despite the first net-
work. If both the first and second networks classified the segment 
as a seizure, the segment was joined with nearby seizure segments 

to form a seizure event. After scanning whole EEG, the collected 
seizure events underwent post-processing. As experimental 
convulsive seizures generally have higher amplitudes than pre-
ictal and postictal EEG (Fig. 1A), our post-processing procedure 
searched for abrupt amplitude changes to find the beginning and 
end of a seizure event. If post-processing found an amplitude dif-
ference greater than 1.2 fold change compared to the surrounding 
EEG amplitudes, the EEG segments were finalized as a seizure 
event. However, if the amplitudes around the seizure segments 
did not change, it was reclassified as a non-seizure event. Taken 
together, to be considered a seizure, all three steps, the first and 
second networks and post-processing, had to agree. Disqualifi-
cation during any of these steps resulted in a non-seizure clas-
sification. The post-processing greatly reduced the number of FP 
events, although an abrupt increase in amplitude itself does not 
indicate seizure activity. In fact, our trial to classify seizures based 
on just amplitude changes resulted in a huge number of FPs (data 
not shown).

Fig. 2. Examples of convulsive seizures. Seizure activities have dif-
ferent shapes, amplitudes, and durations. Our goal was to determine 
whether deep learning is adequate to detect different seizure activities.

Fig. 3. Classification process for 5-sec electroencephalogram (EEG) segments that were either raw or subjected to spectral analysis. (A) A clas-
sifier was built to distinguish total 5,000 raw EEG inputs from 5-sec EEG segments. (B) A classifier was built to distinguish total 100 periodogram results 
between 0 to 99 Hz. (C) Receiver operating characteristics (ROC) curve of classifiers that learned to distinguish seizure events from either raw data or 
periodogram results. Area under the curve (AUC) was calculated for each classifier.
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RESULTS
In this study, we tried to develop a reliable and efficient seizure 

event detector for experimental EEG data. As shown in Fig. 2, 
convulsive seizure activities, which are rare events in long-term, 
continuously recorded EEG, had various EEG shapes, ampli-
tudes, and durations. Thus, we first developed a classifier that can 
classify short EEG traces into seizure or non-seizure segments. 
Then, seizure event detector was built based on the segment 
analysis. We implemented deep neural networks as an EEG seg-
ment classifier since exhaustive feature extraction and selection 
processes, which are prerequisites for other machine learning 
techniques, can be avoided. Deep neural networks can be end-
to-end classifiers that receive raw data as inputs and do all the 
feature extraction and classification [15]. Therefore, we initially 
used raw EEG data for 5-sec segments as input data (Fig. 3A). 
The 5-sec EEG segmentation was widely adopted from previous 
studies for seizure detectors [21,22]. We organized deep neural 
networks with two hidden layers and tested various combina-
tions of hidden node numbers to find out the optimal network 
structure generating the best classification results. When we plot-
ted receiver operating characteristics (ROC) curve for the clas-
sifier of raw EEG inputs, the best result for area under the curve 
(AUC) was 0.972 (Fig. 3C). In spite of impressively high AUC, the 
number of FP seizure segments was about 150,000 when cut-off 
threshold for seizure and non-seizure classification was 0.5. The 
high AUC was obtained because of the many true negative non-
seizure segments (8,261,274) in EEGs (Table 1). Although deep 
learning is representation learning, the 5,000 raw EEG inputs 
may be too coarse for a classifier, since each point may have a low 
signal-to-noise ratio considering the innate noises in EEG record-
ing. Thus, we tested simple frequency-power distribution of 5-sec 
EEG segments as inputs for a new deep neural network (Fig. 3B). 
Since both physiological and epileptic brain rhythms mainly have 
frequency bands less than 100 Hz, we obtained periodogram 
results between 0 and 99 Hz to demonstrate frequency-power dis-
tribution (Fig. 4). When periodogram results were used instead 
of raw EEG traces, the AUC could improve to 0.980, in addition 
to the reduction of FP numbers that was diminished more than 

40% to 87,614. Computational cost for periodogram could be 
negated due to much smaller input number (100 for periodogram 
vs. 5,000 for raw EEG data). Taken together, we concluded that 
simple frequency-power distribution could be more suitable for 
deep learning to classify seizure segments compared to raw EEG 
data. We then used periodogram results for further investigation. 
Although periodogram yielded better results, FP number was still 
too high. We speculated that the high FP number might come 
from relatively small non-seizure training dataset compared to 
the entire EEG data. Because we collected non-seizure training 
data from the 5 min of EEG traces before and after each seizure 
event, our classifier could experience less than 1% of non-seizure 
EEG in the training dataset. Thus, we trained the second deep 
neural network using untrained non-seizure EEGs to make it 
specialize to distinguish the data that the first network failed to 
classify. The 87,614 FP segments obtained from the first network 

Table 1. Classification profiles of different network structures

Raw data
(cut-off 0.5)

Periodogram 1st
(cut-off 0.5)

Periodogram dual
(cut-off 0.5, 0.5)

Periodogram 1st
(cut-off 0.99)

Periodogram dual
(cut-off 0.99, 0.9)

TP 716 737 728 734 722
FP 148,953 87,614 1,596 46,219 112
TN 8,112,321 8,173,660 8,259,678 8,215,055 8,261,162
FN 48 27 36 30 42

True positive (TP), false positive (FP), true negative (TN) and false negative (FN) numbers after different inputs or network structures were 
applied for deep neural networks. Raw data: classification results of a classifier analyzing raw electroencephalogram inputs. Periodogram 
1st: classification results of the first neural network analyzing periodogram. Periodogram dual: classification results of sequential 
application of the first and the second networks analyzing periodogram. Cut-off: cut-off threshold for classifying the input segment to a 
seizure. The two cut-off values shown in “Periodogram dual” indicate the cut-off for the first and the second network, respectively.

Fig. 4. Examples of the periodogram results for 0 to 99 Hz range. (A) 
Non-seizure segment. (B) Seizure segment.
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were used as a new non-seizure training data with the original 
seizure training data to train the second network. When we clas-
sified the training EEG data by sequential applications of the first 
and second networks (Fig. 5), AUC was improved to 0.992 (Fig. 
6A) and FP number was decreased almost 98% to 1,596 (Fig. 6B). 
We could further decrease FP number to 112 by changing cut-
off threshold for seizures to 0.99 and 0.90 for the first and second 
network, respectively (Fig. 6C). The classification results of 5-sec 
segments for whole training dataset were summarized in Table 1.

Next, we combined individual classification results for 5-sec 
segments to organize a seizure event detector. Because of the high 
variations in seizure EEG (Fig. 2), seizure events can contain one 
or two FN segments, resulting in separated seizure segments 
within a seizure event. Thus, we joined nearby seizure segments 
to form a seizure event when separated seizure segments were 
detected within 10 sec of EEG traces. This procedure effectively 
eliminated FN segment between true positive (TP) seizure seg-
ments composing a seizure event. Then, if the seizure event had 
1.2 times higher amplitude compared to nearby EEG, the event 
was finalized as a seizure event. This post-processing effectively 

eliminated much of FP segments. When the final result was over-
lapped with human annotated seizure events, the autodetected 
seizure event was regarded as a TP seizure event. 

To determine the optimal structure of the second network for 
seizure event detection, we tested multiple variations in hidden 
layers (Fig. 7A). The first hidden layer was tested with 200, 300, 
400, 500, and 600 nodes. The second hidden layer had one fourth 
as many nodes as the first hidden layer. We trained each network 
structure three times and let each detect seizure events in all 4,704 
h of training data and 4,272 h of test data. The number of FP and 
FN events was compared. We obtained the number of FPs and 
FNs for both the training and test data sets to gain insight on 
the generalization ability of the network structures (Fig. 7A). FP 
events generally decreased with an increase in hidden nodes: 10.3 
± 0.8, 5.6 ± 0.3, 4.6 ± 0.3, 4.3 ± 0.3, and 6.0 ± 0.5 FPs for the train-
ing set and 19.3 ± 0.8, 12.6 ± 0.8, 10.6 ± 0.6, 6.3 ± 0.3, and 7.3 ± 
0.3 FPs for test set with 200, 300, 400, 500, and 600 nodes, respec-
tively, in the first hidden layer of the second network. FN events 
also decreased: 1.3 ± 0.3, 1.0 ± 0.0, 0.6 ± 0.3, 0.0 ± 0.0, and 0.0 ± 0.0 
FNs for the training set and 1.6 ± 0.3, 0.6 ± 0.3, 1.0 ± 0.0, 0.0 ± 0.0, 

Fig. 5. Classification process for each 5-sec segment. Each 5-sec segment underwent pre-processing to remove large noise and reduce unneces-
sary computation. The first 100 periodogram values in a 5-sec segment were fed to first deep neural network containing 100 input, 200 and 50 hid-
den, and 2 output nodes. If it was classified as a seizure, the second network, which contained 100 input, 500 and 125 hidden, and 2 output nodes, 
classified the same data again. If the second network also classified it as seizure, post-processing finally determined it as seizure if it passed a simple 
rule-based test. Non-seizure results at any point classified the data as non-seizure and started a new turn with next 5-sec segment.

Fig. 6. Improvement of classification performance by sequential dual deep neural networks. (A) Receiver operating characteristics (ROC) curve 
and the area under the curve (AUC) when the 5-sec segments of whole training electroencephalogram datasets were classified with the first network 
only, the second network only, or sequential dual networks. (B) False positive (FP) and false negative (FN) segment numbers were compared after the 
application of the first network only or sequential dual networks when cut-off threshold for seizures was 0.5 and 0.5 for each network, respectively. 
(C) FP and FN segment numbers were compared after the application of the first network only or sequential dual networks when cut-off threshold for 
seizures was 0.99 and 0.90 for each network, respectively. 
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and 0.0 ± 0.0 FNs for the test set with 200, 300, 400, 500, and 600 
nodes, respectively. We found that FP events were lowest with 500 
nodes, and FN events reached 0 with 500 nodes. As the best result 
was obtained with 500 nodes, we used this network to further 
investigate the characteristics of our seizure event autodetector 
algorithm. In addition to network size, window size for spectral 
analysis can be a main determinant of the classifier functional-
ity. Thus, we investigated the effects of window size on FPs and 
FNs (Fig. 5B). FP events for 2-, 5-, and 8-sec windows were 60.6 ± 
3.2, 4.3 ± 0.3, and 2.0 ± 0.5 for the training set and 56.3 ± 1.7, 6.3 
± 0.3, and 2.6 ± 0.3, respectively, for the test set. FN events were 
only present with an 8-sec window: 2.6 ± 0.3 and 3.6 ± 0.6 for 
the training and test sets, respectively. Taken together, our data 
clearly demonstrated that a 5-sec window led to the best results 
with no FNs and acceptable FPs, for constructing a seizure event 
autodetector based on spectral analysis.

DISCUSSION
Automated seizure detection frameworks based on machine 

learning have been proposed for many years [14]. These ap-
proaches have heavily depended on the development of different 
feature extraction methods since carefully selected features were 
important for classifying inputs in classic machine learning. In 
the early stages of EEG analysis, fast Fourier transform (FFT)-
based spectral analysis was a main tool to define seizures [23,24]. 
Periodograms were widely used to determine the power density 
of frequency components in EEG signals. However, as researchers 

began to realize that EEG is highly non-stationary and non-linear 
[12,13], tools to analyze the time-frequency domain, including 
wavelet transform, were used for automated seizure detection 
from EEGs [8,25]. Non-linear EEG analyses were also applied for 
the automated detection of epileptic discharges [26,27]. Since a 
single parameter was not satisfactory to capture the complicated 
seizure characteristics, many multi-domain features have been 
combined to distinguish seizure and non-seizure EEGs [14,21,28-
30]. In these studies, principal component analysis was frequently 
used to determine relevant feature combinations, for helping 
classifiers such as support vector machine to classify seizure 
events. However, exhaustive feature selection processes inevitably 
required high-level engineering skills and domain-expertise in 
addition to a high computational burden that can cause extensive 
time-consumption especially for long-term, continuous EEG 
recordings. To circumvent the limitations of current feature ex-
traction methods, a deep neural network that can act as both a 
feature extractor and classifier was recently introduced for seizure 
detection [31] and prediction [32]. For seizure detection, Ansari 
et al. [31] used a convolutional neural network to detect seizures 
from raw EEG inputs. Although their network could classify sei-
zures without laborious feature extraction, they filtered EEG data 
with cut-off frequencies of 0.5 and 12.8 Hz and sampling rates of 
32 Hz, which may oversimplify the EEG dataset. Thus, we tested 
raw EEG and simple spectral analysis results as inputs to utilize 
the information from wider EEG signal frequency ranges with 
fully connected deep neural networks. Despite both raw EEG and 
periodogram results showed a suitable ROC curve, we chose to 
build a seizure event detector based on spectral analysis since it 

Fig. 7. Effects of network size and window size on seizure event detection results. (A) Effects of network size. Left panel: false positive (FP) event 
numbers for training and test datasets for 200, 300, 400, 500, and 600 nodes in the first hidden layer of the second deep neural network. The number 
of nodes in the second hidden layer was one-fourth that of the first hidden layer. Right panel: false negative (FN) event numbers for training and test 
datasets for 200, 300, 400, 500, and 600 nodes in the first hidden layer of the second deep neural network. (B) Effects of window size. Left panel: FP 
event numbers in the training and test datasets for 2-, 5-, and 8-sec windows. Right panel: FN event numbers in the training and test datasets for 2-, 
5-, and 8-sec windows.



138

https://doi.org/10.4196/kjpp.2019.23.2.131Korean J Physiol Pharmacol 2019;23(2):131-139

Jang HJ and Cho KO 

showed better ROC curve and lower FP results.
To achieve good classification of seizures, sophisticated con-

struction of a classifier is critical. First, we tried to train a single, 
fully connected deep neural network with various layer depths 
and numbers of nodes. However, using seizure and 5 min of pre- 
and post-seizure EEG as training data, this single network ap-
proach yielded too many FP results for the whole training EEG 
datasets, even though the validation accuracy for training data 
was high (best validation result was 99.34%). Possible explana-
tions for the unsatisfactory results are limited experience of the 
single deep neural network on EEG signals and subsequently 
missing dynamic pattern changes in EEG recordings. Since we 
speculated that these limitations might cause poor discrimination 
of seizure and non-seizure EEGs in the whole dataset, we adopted 
sequential dual deep neural networks. The core concept was to 
train the second network with non-seizure training datasets that 
were FP results of the first network. The FP results were obtained 
by letting the first network screen the entire training set through 
half-overlapping, 5-sec sliding windows. This way, characteristics 
of the full datasets could be included in training the second net-
work. Finally, when we combined the first and second networks, 
the number of FP decreased from 87,614 to 1,596 (Table 1), sug-
gesting the excellent feasibility of our seizure classifier. When the 
cut-off threshold was adjusted properly, the number of FP could 
be decreased to 112. However, this result was not achieved with 
either network alone (Fig. 6A). In particular, the second network 
alone was far worse than the first network even though it was 
trained with more data. The reason for the poor performance 
of the second network alone can be explained by the nature of 
training dataset for the second network. The second network was 
trained with non-seizure data that the first network misclassified 
as seizures. Therefore, the second network could be specialized 
for discriminating confusing EEG traces that were misclassified 
by the first network but not optimized for typical non-seizure 
EEG traces. Taken together, these findings indicate that the two 
networks should be used sequentially to accomplish the best sei-
zure classification. 

One important precaution in deep learning is to avoid overfit-
ting to training data. In this study, although the training and test 
sets had different backgrounds, the classification results from 
both datasets did not differ considerably (Fig. 7), indicating that 
our network was not overfit to the training dataset. Moreover, 
the numbers of FPs and FNs in the training and test datasets 
converged as the second network size gradually increased (Fig. 
7A). These results suggest that our deep neural network could be 
generalized to differences between the periodograms of seizure 
and non-seizure EEGs without overfitting to training data. 

Seizure detection systems must have high sensitivity, even if 
they produce some FP results, since neurologists and neuroscien-
tists can easily differentiate true and FP seizures among epileptic 
discharges classified by deep neural networks [28]. Our seizure 
event autodetector had no FN, i.e., 100% sensitivity, suggesting 

a superior capability. We also adopted rule-based pre- and post-
processing steps in addition to deep neural networks. These steps 
were based on seizure EEG characteristics. This approach mark-
edly reduced processing time and provided a great accuracy for 
specifying the start and end of each seizure event. For example, 
our seizure event autodetector could classify 8,977 h of training 
and test EEG in only 2.28 h with a personal computer, meaning 
that more than 1 h of EEG data was scanned in 1 sec. Consider-
ing that an old system took 1 sec to calculate FFT for 1.28 sec 
EEG data [23], our autodetector could inspect large EEG datasets 
quickly and precisely with improved computing power and a ma-
chine learning algorithm. 

A handful of seizure detection systems are commercially 
available for experimental animals. However, extremely detailed 
parameters are needed to distinguish seizures from baseline EEG 
traces, lowering the feasibility of automated seizure detectors. 
As discussed above, our seizure autodetector can discriminate 
between seizure and non-seizure EEGs with simple and basic 
feature extraction, which can reduce the exhaustive processes of 
manually defining seizures. Moreover, the exceptional sensitiv-
ity of our system can identify all convulsive seizure events. Since 
mastering EEG analysis requires substantial experience, automat-
ed seizure detection by artificial intelligence will greatly increase 
the accessibility of EEG interpretation to new researchers in the 
epilepsy field. In addition, automated detection can also save time 
over manual EEG analysis even for experienced investigators, 
as the initial selection of convulsive seizures has already been 
completed. In summary, our seizure autodetector, constructed by 
combining a basic feature extractor with dual deep neural net-
works and rule-based pre- and post-processing, can be a practical 
solution for all researchers interested in seizures and epilepsy. 
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