DOI QR코드

DOI QR Code

COMBINATORIAL AUSLANDER-REITEN QUIVERS AND REDUCED EXPRESSIONS

  • Oh, Se-jin (Department of Mathematics Ewha Womans University) ;
  • Suh, Uhi Rinn (Department of Mathematical Sciences Research Institute of Mathematics Seoul National University)
  • Received : 2018.03.19
  • Accepted : 2018.07.31
  • Published : 2019.03.01

Abstract

In this paper, we introduce the notion of combinatorial Auslander-Reiten (AR) quivers for commutation classes [${\tilde{w}}]$ of w in a finite Weyl group. This combinatorial object is the Hasse diagram of the convex partial order ${\prec}_{[{\tilde{w}}]}$ on the subset ${\Phi}(w)$ of positive roots. By analyzing properties of the combinatorial AR-quivers with labelings and reflection functors, we can apply their properties to the representation theory of KLR algebras and dual PBW-basis associated to any commutation class [${\tilde{w}}_0$] of the longest element $w_0$ of any finite type.

Keywords

References

  1. M. Auslander, I. Reiten, and S. O. Smalo, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.
  2. R. Bedard, On commutation classes of reduced words in Weyl groups, European J. Combin. 20 (1999), no. 6, 483-505. https://doi.org/10.1006/eujc.1999.0296
  3. N. Bourbaki, Elements de mathematique. Fasc. XXXIV. Groupes et algebres de Lie. Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendres par des reflexions. Chapitre VI: systemes de racines, Actualites Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
  4. J. Brundan, A. Kleshchev, and P. J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353-1404. https://doi.org/10.1215/00127094-2681278
  5. J. Claxton and P. Tingley, Young tableaux, multisegments, and PBW bases, Sem. Lothar. Combin. 73 (2015), Art. B73c, 21 pp.
  6. P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in Represen- tation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), 1-71, Lecture Notes in Math., 831, Springer, Berlin, 1980.
  7. D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77-126.
  8. S.-J. Kang, M. Kashiwara, and M. Kim, Symmetric quiver Hecke algebras and R- matrices of quantum affine algebras. II, Duke Math. J. 164 (2015), no. 8, 1549-1602. https://doi.org/10.1215/00127094-3119632
  9. S. Kato, Poincare-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 3, 619-663. https://doi.org/10.1215/00127094-2405388
  10. M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. https://doi.org/10.1090/S1088-4165-09-00346-X
  11. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498. https://doi.org/10.1090/S0894-0347-1990-1035415-6
  12. G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89-113. https://doi.org/10.1007/BF00147341
  13. G. Lusztig, Canonical bases and Hall algebras, in Representation theories and algebraic geometry (Montreal, PQ, 1997), 365-399, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer Acad. Publ., Dordrecht, 1998.
  14. P. J. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math. 707 (2015), 103-124.
  15. S. Oh, Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, J. Algebra 460 (2016), 203-252. https://doi.org/10.1016/j.jalgebra.2016.03.043
  16. S. Oh, Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality, Trans. Amer. Math. Soc. 369 (2017), no. 3, 1895-1933. https://doi.org/10.1090/tran6704
  17. S. Oh, Auslander-Reiten quiver and representation theories related to KLR-type Schur-Weyl duality, Math. Z. (2018). https://doi.org/10.1007/s00209-018-2093-2.
  18. P. Papi, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), no. 3, 661-665. https://doi.org/10.1090/S0002-9939-1994-1169886-7
  19. C. M. Ringel, Tame algebras, Proceedings ICRA 2, Springer LNM 831, (1980), 137-87.
  20. C. M. Ringel, PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 51-88.
  21. R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).
  22. R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359-410. https://doi.org/10.1142/S1005386712000247
  23. Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 209-232. https://doi.org/10.2977/prims/1195166130
  24. D. Simson and A. Skowronski, Elements of the representation theory of associative algebras. Vol. 2, London Mathematical Society Student Texts, 71, Cambridge University Press, Cambridge, 2007.
  25. N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org.
  26. M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67-100.
  27. D. P. Zhelobenko, Extremal cocycles on Weyl groups, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 11-21, 95. https://doi.org/10.1007/BF02577133