DOI QR코드

DOI QR Code

Hydroxyapatite prepared from eggshell and mulberry leaf extract by precipitation method

  • Wu, Shih-Ching (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ;
  • Hsu, Hsueh-Chuan (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ;
  • Hsu, Shih-Kuang (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ;
  • Liu, Mei-Yi (Department of Chemical and Materials Engineering, National University of Kaohsiung) ;
  • Ho, Wen-Fu (Department of Chemical and Materials Engineering, National University of Kaohsiung)
  • Received : 2018.06.10
  • Accepted : 2019.03.05
  • Published : 2019.03.25

Abstract

Eggshell is a waste material after the usage of egg. In this work, biowaste chicken eggshells were used for preparing carbonated hydroxyapatite (HA) nanoparticles of high purity through aqueous precipitation method at room temperature. The eggshell-derived HA will be a cost-effective bioceramics for biomedical applications and an effective material-recycling technology. Additionally, mulberry leaf extract was used as a template to regulate the morphology, size and crystallinity of HA, and the effects of pH value were also examined. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) was used to determine the size, shape and morphology of HA. The results indicate that only one phase of HA were synthesized in the both absence and presence of mulberry leaf extract at pH of 7 and above, while DCPD or DCPA/DCPD phase was observed at pH 4 condition. The crystallite sizes of the HA samples obviously decreased when adding mulberry leaf extract as a template, while they decreased gradually as the solution pH levels increased. With increasing pH level from 7 to 14, the rod-like HA nanoparticles gradually changed to spherical shape at pH 14. Note that, the obtained product is Mg and Sr containing A- and B-type carbonate HA at alkaline pH and it can be a potential material for biomedical applications.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology of Taiwan

References

  1. Afshar, A., Ghorbani, M., Ehsani, N., Saeri, M.R. and Sorrell, C.C. (2003), "Some important factors in the wet precipitation process of hydroxyapatite", Mater. Des., 24(3), 197-202. https://doi.org/10.1016/S0261-3069(03)00003-7
  2. Baskar, D., Balu, R. and Kumar, T.S.S. (2011), "Mineralization of pristine chitosan film through biomimetic process", Int. J. Biol. Macromol., 49(3), 385-389. https://doi.org/10.1016/j.ijbiomac.2011.05.021
  3. Best, S.M., Porter, A.E., Thian, E.S. and Huang, J. (2008), "Bioceramics: Past, present and for the future", J. Eur. Ceram. Soc., 28(7), 1319-1327. https://doi.org/10.1016/j.jeurceramsoc.2007.12.001
  4. Bohner, M. (2000), "Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements", Injur., 31, D37-D47. https://doi.org/10.1016/S0020-1383(00)80022-4
  5. Boutinguiza, M., Pou, J., Comesana, R., Lusquinos, F., De Carlos, A. and Leon, B. (2012), "Biological hydroxyapatite obtained from fish bones", Mater. Sci. Eng. C, 32(3), 478-486. https://doi.org/10.1016/j.msec.2011.11.021
  6. Cox, S.C., Jamshidi, P., Grover, L.M. and Mallick, K.K. (2014), "Low temperature aqueous precipitation of needle-like nanophase hydroxyapatite", J. Mater. Sci. Mater. Med., 25(1), 37-46. https://doi.org/10.1007/s10856-013-5042-y
  7. Dahl, S.G., Allain, P., Marie, P.J., Mauras, Y., Boivin, G., Ammann, P., Tsouderos, Y., Delmas, P.D. and Christiansen, C. (2001), "Incorporation and distribution of strontium in bone", Bone, 28(4), 446-453. https://doi.org/10.1016/S8756-3282(01)00419-7
  8. Deng, Y., Sun, Y., Chen, X., Zhu, P. and Wei, S. (2013), "Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin", Mater. Sci. Eng. C, 33(5), 2905-2913. https://doi.org/10.1016/j.msec.2013.03.016
  9. Dorozhkin, S.V. and Epple, M. (2002), "Biological and medical significance of calcium phosphates", Angew. Chem. Int. Ed., 41(17), 3130-3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
  10. Fathia, M.H., Hanifia, A. and Mortazavi, V. (2008), "Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder", J. Mater. Proc. Technol., 202(1-3), 536-542. https://doi.org/10.1016/j.jmatprotec.2007.10.004
  11. Girija, E.K., Suresh Kumar, G., Thamizhavel, A., Yokogawa, Y. and Narayana Kalkura, S. (2012), "Role of material processing on the thermal stability and sinterability of nanocrystalline hydroxyapatite", Powd. Technol., 225, 190-195. https://doi.org/10.1016/j.powtec.2012.04.007
  12. Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S. and Peker, I. (2005), "The influence of sintering temperature on mechanical and microstructural properties of bovine hydroxyapatite", Key Eng. Mater., 284, 325-328. https://doi.org/10.4028/www.scientific.net/KEM.284-286.325
  13. Habib, F., Alam, S., Zahra, N., Irfan, M. and Iqbal, W. (2012), "Synthesis route and characterization of hydroxyapatite powder prepared from waste egg shells", J. Chem. Soc. Pakist., 34(3), 584-588.
  14. Han, Y., Xu, K., Montay, G., Fu, T. and Lu, J. (2002), "Evaluation of nanostructured carbonated hydroxyapatite coatings formed by a hybrid process of plasma spraying and hydrothermal synthesis", J. Biomed. Mater. Res., 60(4), 511-516. https://doi.org/10.1002/jbm.10097
  15. Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W. and Wu, S.C. (2013), "Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction", Ceram. Inter., 39(6), 6467-6473. https://doi.org/10.1016/j.ceramint.2013.01.076
  16. Ivanova, T.I., Frank-Kamenetskaya, O.V., Kol'tsov, A.B. and Ugolkov, V.L. (2001), "Crystal structure of calcium-deficient carbonated hydroxyapatite: thermal decomposition", J. Sol. State Chem., 160(2), 340-349. https://doi.org/10.1006/jssc.2000.9238
  17. Kamalanathan, P., Ramesh, S., Bang, L.T., Niakan, A., Tan, C.Y., Purbolaksono, J., Chandran, H. and Teng, W.D. (2014), "Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor", Ceram. Inter., 40(10), 16349-16359. https://doi.org/10.1016/j.ceramint.2014.07.074
  18. Kim, H.M., Kim, Y., Park, S.J., Rey, C., Lee, H.M., Gimcher, M.J. and Ko, J.S. (2000), "Thin film of lowcrystalline calcium phosphate apatite formed at low temperature", Biomater., 21(11), 1129-1134. https://doi.org/10.1016/S0142-9612(99)00265-3
  19. Krishna, D.S.R., Siddharthan, A., Seshadri, S.K. and Kumar, T.S.S. (2007), "A novel route for synthesis of nanocrystalline hydroxyapatite from eggshell waste", J. Mater. Sci. Mater. Med., 18(9), 1735-1743. https://doi.org/10.1007/s10856-007-3069-7
  20. Landi, E., Tampieri, A., Celotti, G. and Sprio, S. (2000), "Densification behavior and mechanisms of synthetic hydroxyapatites", J. Eur. Ceram. Soc., 20(14-15), 2377-2387. https://doi.org/10.1016/S0955-2219(00)00154-0
  21. Li, Z.Y., Lam, W.M., Yang, C., Xu, B., Ni, G.X., Abbah, S.A., Cheung, K.M.C., Luk, K.D.K. and Lu, W.W. (2007), "Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite", Biomater., 28(7), 1452-1460. https://doi.org/10.1016/j.biomaterials.2006.11.001
  22. Liu, D., Troczynski, T. and Tseng, W.J. (2001), "Water-based sol-gel synthesis of hydroxyapatite: Process development", Biomater., 22(13), 1721-1730. https://doi.org/10.1016/S0142-9612(00)00332-X
  23. Liu, J., Ye, X., Wang, H., Zhu, M., Wang, B. and Yan, H. (2003), "The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method", Ceram. Int., 29(6), 629-633. https://doi.org/10.1016/S0272-8842(02)00210-9
  24. Matsuura, A., Kubo, T., Doi, K., Hayashi, K., Morita, K., Yokota, R., Hayashi, H., Hirata, I., Okazaki, M. and Akagawa, Y. (2009), "Bone formation ability of carbonate apatite-collagen scaffolds with different carbonate contents", Dent. Mater. J., 28(2), 234-242. https://doi.org/10.4012/dmj.28.234
  25. Mollazadeh, S., Javadpour, J. and Khavandi, A. (2007), "In situ synthesis and characterization of nano-size hydroxyapatite in poly (vinyl alcohol) matrix", Ceram. Int., 33(8), 1579-1583. https://doi.org/10.1016/j.ceramint.2006.06.006
  26. Neira, I.S., Kolen'ko, Y.V., Lebedev, O.I., Van Tendeloo, G., Gupta, H.S., Guitian, F. and Yoshimura, M. (2009), "An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis", Cryst. Grow. Des., 9(1), 466-474. https://doi.org/10.1021/cg800738a
  27. Rude, R.K., Singer, F.R. and Gruber, H.E. (2009), "Skeletal and hormonal effects of magnesium deficiency", J. Am. Coll. Nutr., 28(2), 131-141. https://doi.org/10.1080/07315724.2009.10719764
  28. Sadat-Shojai, M., Khorasani, M.T. and Jamshidi, A. (2012), "Hydrothermal processing of hydroxyapatite nanoparticles-a Taguchi experimental design approach", J. Cryst. Grow., 361, 73-84. https://doi.org/10.1016/j.jcrysgro.2012.09.010
  29. Sadjadi, M.S., Meskinfam, M., Sadeghi, B., Jazdarreh, H. and Zare, K. (2010), "In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix", Mater. Chem. Phys., 124(1), 217-222. https://doi.org/10.1016/j.matchemphys.2010.06.022
  30. Siddharthan, A., Kumar, T.S. and Seshadri, S.K. (2009), "Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios", Biomed. Mater., 4(4), 045010. https://doi.org/10.1088/1748-6041/4/4/045010
  31. Sivakumar, G.R., Girija, E.K., Narayanakalkura, S. and Subramanian, C. (1998), "Crystallization and characterization of calcium phosphates: Brushite and monetite", Cryst. Res. Technol., 33(2), 197-205. https://doi.org/10.1002/(SICI)1521-4079(1998)33:2<197::AID-CRAT197>3.0.CO;2-K
  32. Son, K.D. and Kim, Y.J. (2013), "Morphological structure and characteristics of hydroxyapatite/$\beta$-cyclodextrin composite nanoparticles synthesized at different conditions", Mater. Sci. Eng. C, 33(1), 499-506. https://doi.org/10.1016/j.msec.2012.09.020
  33. Tadic, D., Peters, F. and Epple, M. (2002), "Continuous synthesis of amorphous apatites", Biomater., 23(12), 2553-2559. https://doi.org/10.1016/S0142-9612(01)00390-8
  34. Tas, A.C. (2000), "Synthesis of biomimetic Ca-hydroxyapatite powders at $37^{\circ}C$ in synthetic body fluids", Biomater., 21(14), 1429-1438. https://doi.org/10.1016/S0142-9612(00)00019-3
  35. Van Kemenade, M.J.J.M. and De Bruyn, P.L. (1987), "A kinetic study of precipitation from supersaturated calcium phosphate solutions", J. Colloid Interf. Sci., 118(2), 564-585. https://doi.org/10.1016/0021-9797(87)90490-5
  36. Vega, E.D., Pedregosa, J.C., Narda, G.E. and Morando, P.J. (2003), "Removal of oxovanadium (IV) from aqueous solutions by using commercial crystalline calcium hydroxyapatite", Water Res., 37(8), 1776-1782. https://doi.org/10.1016/S0043-1354(02)00565-1
  37. Wang, P., Li, C., Gong, H., Jiang, X., Wang, H. and Li, K. (2010), "Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process", Powd. Technol., 203(2), 315-321. https://doi.org/10.1016/j.powtec.2010.05.023
  38. Wang, P., Yook, S.W., Jun, S.H., Li, Y.L., Kim, M., Kim, H.E. and Koh, Y.H. (2009), "Synthesis of nanoporous calcium phosphate spheres using poly (acrylic acid) as a structuring unit", Mater. Lett., 63(13-14), 1207-1209. https://doi.org/10.1016/j.matlet.2009.02.033
  39. Wu, S.C., Hsu, H.C., Wu, Y.N. and Ho, W.F. (2011), "Hydroxyapatite synthesized from oyster shell powders by ball milling and heat treatment", Mater. Character., 62(12), 1180-1187. https://doi.org/10.1016/j.matchar.2011.09.009
  40. Wu, S.C., Tsou, H.K., Hsu, H.C., Hsu, S.K., Liou, S.P. and Ho, W.F. (2013), "A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite", Ceram. Inter., 39(7), 8183-8188. https://doi.org/10.1016/j.ceramint.2013.03.094
  41. Xiao, X.F., Liu, R.F. and Gao, Y.J. (2008), "Hydrothermal preparation of nanocarbonated hydroxyapatite crystallites", Mater. Sci. Technol., 24(10), 1199-1203. https://doi.org/10.1179/174328407X161088
  42. Zhang, Y., Liu, Y., Ji, X., Banks, C.E. and Song, J. (2011), "Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane", Colloids Surf. B, 82(2), 490-496. https://doi.org/10.1016/j.colsurfb.2010.10.006