DOI QR코드

DOI QR Code

THE ARTINIAN POINT STAR CONFIGURATION QUOTIENT AND THE STRONG LEFSCHETZ PROPERTY

  • Kim, Young-Rock (Major in Mathematics Education Graduate School of Education Hankuk University of Foreign Studies) ;
  • Shin, Yong-Su (Department of Mathematics Sungshin Women's University)
  • Received : 2018.04.18
  • Accepted : 2019.01.08
  • Published : 2019.05.01

Abstract

It has been little known when an Artinian point quotient has the strong Lefschetz property. In this paper, we find the Artinian point star configuration quotient having the strong Lefschetz property. We prove that if ${\mathbb{X}}$ is a star configuration in ${\mathbb{P}}^2$ of type s defined by forms (a-quadratic forms and (s - a)-linear forms) and ${\mathbb{Y}}$ is a star configuration in ${\mathbb{P}}^2$ of type t defined by forms (b-quadratic forms and (t - b)-linear forms) for $b=deg({\mathbb{X}})$ or $deg({\mathbb{X}})-1$, then the Artinian ring $R/(I{\mathbb_{X}}+I{\mathbb_{Y}})$ has the strong Lefschetz property. We also show that if ${\mathbb{X}}$ is a set of (n+ 1)-general points in ${\mathbb{P}}^n$, then the Artinian quotient A of a coordinate ring of ${\mathbb{X}}$ has the strong Lefschetz property.

Keywords

DBSHBB_2019_v56n3_645_f0001.png 이미지

FIGURE 1. The union of two point star configurations in ℙ2 of types 3 and 5

TABLE 1. A 𝕜-configuration in ℙ2 of type (1, 2, 3, . . . , t + b -2, t+ b- 1, t+ b)

DBSHBB_2019_v56n3_645_t0001.png 이미지

TABLE 2. A set 𝕏 ∪ 𝕐 = 𝕌 ∪ 𝕍

DBSHBB_2019_v56n3_645_t0002.png 이미지

TABLE 3. A 𝕜-configuration ∪ in ℙ2 of type (t+b-2u, . . . , t+b- 2, t+ b- 1)

DBSHBB_2019_v56n3_645_t0003.png 이미지

TABLE 4. A point star configuration 𝕍 in ℙ2 of type (t - u)defined by (b- u)-quadratic forms and (t- b)-linear forms

DBSHBB_2019_v56n3_645_t0004.png 이미지

TABLE 5. A 𝕜-configuration in ℙ2 of type (1, 2, 3, ..., $\underline{t-u+2b-1}$, $\underline{t-u+2b+1}$, ..., t+b)

DBSHBB_2019_v56n3_645_t0005.png 이미지

TABLE 6. A 𝕜-configuration in ℙ2 of type (1, 2, 3, ..., $\underline{t+b-2l-1}$, $\underline{t+b-2l+1}$, ..., t+b)

DBSHBB_2019_v56n3_645_t0006.png 이미지

TABLE 7. A 𝕜-configuration in ℙ2 of type (1, 2, 3, ..., $\underline{t+b-2l-2}$, $\underline{t+b-2l}$, ... , t+b)

DBSHBB_2019_v56n3_645_t0007.png 이미지

References

  1. J. Ahn and Y. S. Shin, The minimal free resolution of a star-configuration in ${\mathbb{P}}^n$ and the weak Lefschetz property, J. Korean Math. Soc. 49 (2012), no. 2, 405-417. https://doi.org/10.4134/JKMS.2012.49.2.405
  2. C. Bocci and B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19 (2010), no. 3, 399-417. https://doi.org/10.1090/S1056-3911-09-00530-X
  3. C. Bocci and B. Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138 (2010), no. 4, 1175-1190. https://doi.org/10.1090/S0002-9939-09-10108-9
  4. E. Carlini, E. Guardo, and A. Van Tuyl, Star configurations on generic hypersurfaces, J. Algebra 407 (2014), 1-20. https://doi.org/10.1016/j.jalgebra.2014.02.013
  5. M. V. Catalisano, A. V. Geramita, A. Gimigliano, B. Habourne, J. Migliore, U. Nagel, and Y. S. Shin, Secant varieties to the varieties of reducible hypersurfaces in ${\mathbb{P}}^n$, J. Algebra, submitted.
  6. M. V. Catalisano, A. V. Geramita, A. Gimigliano, and Y. S. Shin, The secant line variety to the varieties of reducible plane curves, Ann. Mat. Pura Appl. (4) 195 (2016), no. 2, 423-443. https://doi.org/10.1007/s10231-014-0470-y
  7. F. Galetto, Y. S. Shin, and A. Van Tuyl, Distinguishing ${\mathbb{K}}$-configurations, Illinois J. Math. 61 (2017), no. 3-4, 415-441. https://doi.org/10.1215/ijm/1534924834
  8. A. V. Geramita, B. Harbourne, and J. Migliore, Star configurations in ${\mathbb{P}}^n$, J. Algebra 376 (2013), 279-299. https://doi.org/10.1016/j.jalgebra.2012.11.034
  9. A. V. Geramita, B. Harbourne, J. Migliore, and U. Nagel, Matroid configurations and symbolic powers of their ideals, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7049-7066. https://doi.org/10.1090/tran/6874
  10. A. V. Geramita, T. Harima, J. C. Migliore, and Y. S. Shin, The Hilbert function of a level algebra, Mem. Amer. Math. Soc. 186 (2007), no. 872, vi+139 pp.
  11. A. V. Geramita, T. Harima, and Y. S. Shin, Extremal point sets and Gorenstein ideals, Adv. Math. 152 (2000), no. 1, 78-119. https://doi.org/10.1006/aima.1998.1889
  12. A. V. Geramita, T. Harima, and Y. S. Shin, An alternative to the Hilbert function for the ideal of a finite set of points in ${\mathbb{P}}^n$, Illinois J. Math. 45 (2001), no. 1, 1-23. https://doi.org/10.1215/ijm/1258138252
  13. A. V. Geramita, T. Harima, and Y. S. Shin, Decompositions of the Hilbert function of a set of points in ${\mathbb{P}}^n$, Canad. J. Math. 53 (2001), no. 5, 923-943. https://doi.org/10.4153/CJM-2001-037-3
  14. A. V. Geramita, T. Harima, and Y. S. Shin, Some special configurations of points in ${\mathbb{P}}^n$, J. Algebra 268 (2003), no. 2, 484-518. https://doi.org/10.1016/S0021-8693(03)00118-2
  15. A. V. Geramita, P. Maroscia, and L. G. Roberts, The Hilbert function of a reduced k-algebra, J. London Math. Soc. (2) 28 (1983), no. 3, 443-452. https://doi.org/10.1112/jlms/s2-28.3.443
  16. A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in ${\mathbb{P}}^2$, J. Algebra 298 (2006), no. 2, 563-611. https://doi.org/10.1016/j.jalgebra.2006.01.035
  17. A. V. Geramita and Y. S. Shin, k-configurations in $P^3$ all have extremal resolutions, J. Algebra 213 (1999), no. 1, 351-368. https://doi.org/10.1006/jabr.1998.7651
  18. T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), no. 3, 313-324. https://doi.org/10.1016/0022-4049(95)00109-A
  19. T. Harima, T. Maeno, H. Morita, Y. Numata, A.Wachi, and J.Watanabe, The Lefschetz properties, Lecture Notes in Mathematics, 2080, Springer, Heidelberg, 2013.
  20. T. Harima, J. Migliore, U. Nagel, and J. Watanabe, The weak and strong Lefschetz properties for Artinian K-algebras, J. Algebra 262 (2003), no. 1, 99-126. https://doi.org/10.1016/S0021-8693(03)00038-3
  21. A. Iarrobino, P. M. Marques, and C. MaDaniel, Jordan type and the Associated graded algebra of an Artinian Gorenstein algebra, arXiv:1802.07383 (2018).
  22. Y. R. Kim and Y. S. Shin, Star-configurations in ${\mathbb{P}}^n$ and the weak-Lefschetz property, Comm. Algebra 44 (2016), no. 9, 3853-3873. https://doi.org/10.1080/00927872.2015.1027373
  23. Y. R. Kim and Y. S. Shin, An Artinian point-configuration quotient and the strong Lefschetz property, J. Korean Math. Soc. 55 (2018), no. 4, 763-783. https://doi.org/10.4134/JKMS.J170035
  24. J. Migliore and R. M. Miro-Roig, Ideals of general forms and the ubiquity of the weak Lefschetz property, J. Pure Appl. Algebra 182 (2003), no. 1, 79-107. https://doi.org/10.1016/S0022-4049(02)00314-6
  25. J. Migliore and U. Nagel, Survey article: a tour of the weak and strong Lefschetz properties, J. Commut. Algebra 5 (2013), no. 3, 329-358. https://doi.org/10.1216/JCA-2013-5-3-329
  26. J. P. Park and Y. S. Shin, The minimal free graded resolution of a star-configuration in ${\mathbb{P}}^n$, J. Pure Appl. Algebra 219 (2015), no. 6, 2124-2133. https://doi.org/10.1016/j.jpaa.2014.07.026
  27. L. G. Roberts and M. Roitman, On Hilbert functions of reduced and of integral algebras, J. Pure Appl. Algebra 56 (1989), no. 1, 85-104. https://doi.org/10.1016/0022-4049(89)90123-0
  28. Y. S. Shin, Secants to the variety of completely reducible forms and the Hilbert function of the union of star-configurations, J. Algebra Appl. 11 (2012), no. 6, 1250109, 27 pp. https://doi.org/10.1142/S0219498812501095
  29. Y. S. Shin, Star-configurations in ${\mathbb{P}}^2$ having generic Hilbert function and the weak Lefschetz property, Comm. Algebra 40 (2012), no. 6, 2226-2242. https://doi.org/10.1080/00927872.2012.656783
  30. Y. S. Shin, Some examples of the union of two linear star-configurations in ${\mathbb{P}}^2$ having generic Hilbert function, J. Chungcheong Math. Soc. 26 (2013), no. 2, 403-409. https://doi.org/10.14403/jcms.2013.26.2.403
  31. A. Terracini, Sulle $V_k$ per cui la varieta degli $S_h$ (h + 1)-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo 31 (1911), 392-396. https://doi.org/10.1007/BF03018812