DOI QR코드

DOI QR Code

PARAMETER DEPENDENCE OF SMOOTH STABLE MANIFOLDS

  • Barreira, Luis (Centro de Analise Matematica, Geometria e Sistemas Dinamicos Departamento de Matematica Instituto Superior Tecnico Universidade de Lisboa) ;
  • Valls, Claudia (Centro de Analise Matematica, Geometria e Sistemas Dinamicos Departamento de Matematica Instituto Superior Tecnico Universidade de Lisboa)
  • Received : 2018.07.03
  • Accepted : 2018.10.12
  • Published : 2019.05.01

Abstract

We establish the existence of $C^1$ stable invariant manifolds for differential equations $u^{\prime}=A(t)u+f(t,u,{\lambda})$ obtained from sufficiently small $C^1$ perturbations of a nonuniform exponential dichotomy. Since any linear equation with nonzero Lyapunov exponents has a nonuniform exponential dichotomy, this is a very general assumption. We also establish the $C^1$ dependence of the stable manifolds on the parameter ${\lambda}$. We emphasize that our results are optimal, in the sense that the invariant manifolds are as regular as the vector field. We use the fiber contraction principle to establish the smoothness of the invariant manifolds. In addition, we can also consider linear perturbations, and thus our results can be readily applied to the robustness problem of nonuniform exponential dichotomies.

Keywords

Acknowledgement

Supported by : FCT

References

  1. L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Encyclopedia of Mathematics and its Applications, 115, Cambridge University Press, Cambridge, 2007.
  2. L. Barreira and C. Valls, Characterization of stable manifolds for nonuniform exponential dichotomies, Discrete Contin. Dyn. Syst. 21 (2008), no. 4, 1025-1046. https://doi.org/10.3934/dcds.2008.21.1025
  3. L. Barreira and C. Valls, Optimal regularity of stable manifolds of nonuniformly hyperbolic dynamics, Topol. Methods Nonlinear Anal. 38 (2011), no. 2, 333-362.
  4. A. Fathi, M.-R. Herman, and J.-C. Yoccoz, A proof of Pesin's stable manifold theorem, in Geometric dynamics (Rio de Janeiro, 1981), 177-215, Lecture Notes in Math., 1007, Springer, Berlin, 1983.
  5. R. Mane, Lyapounov exponents and stable manifolds for compact transformations, in Geometric dynamics (Rio de Janeiro, 1981), 522-577, Lecture Notes in Math., 1007, Springer, Berlin, 1983.
  6. V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obsc. 19 (1968), 179-210.
  7. Ya. Pesin, Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR-Izv. 40 (1976), 1261-1305. https://doi.org/10.1070/IM1976v010n06ABEH001835
  8. Ya. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55-112, 287.
  9. C. Pugh and M. Shub, Ergodic attractors, Trans. Amer. Math. Soc. 312 (1989), no. 1, 1-54. https://doi.org/10.1090/S0002-9947-1989-0983869-1
  10. D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Etudes Sci. Publ. Math. No. 50 (1979), 27-58. https://doi.org/10.1007/BF02684768
  11. D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. (2) 115 (1982), no. 2, 243-290. https://doi.org/10.2307/1971392