DOI QR코드

DOI QR Code

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae (School of Biological Sciences, Seoul National University) ;
  • Lee, Chiwoo (School of Biological Sciences, Seoul National University) ;
  • Kaang, Bong-Kiun (School of Biological Sciences, Seoul National University)
  • Received : 2019.01.14
  • Accepted : 2019.05.29
  • Published : 2019.07.01

Abstract

Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.

Keywords

References

  1. Kawashima T, Okuno H, Bito H. A new era for functional labeling of neurons: activity-dependent promoters have come of age. Front Neural Circuits. 2014;8:37.
  2. Minatohara K, Akiyoshi M, Okuno H. Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci. 2016;8:78.
  3. Cho J, Yu NK, Choi JH, Sim SE, Kang SJ, Kwak C, Lee SW, Kim JI, Choi DI, Kim VN, Kaang BK. Multiple repressive mechanisms in the hippocampus during memory formation. Science. 2015;350:82-87. https://doi.org/10.1126/science.aac7368
  4. Xiu J, Zhang Q, Zhou T, Zhou TT, Chen Y, Hu H. Visualizing an emotional valence map in the limbic forebrain by TAI-FISH. Nat Neurosci. 2014;17:1552-1559. https://doi.org/10.1038/nn.3813
  5. Zhang Q, He Q, Wang J, Fu C, Hu H. Use of TAI-FISH to visualize neural ensembles activated by multiple stimuli. Nat Protoc. 2018;13:118-133. https://doi.org/10.1038/nprot.2017.134
  6. Yokose J, Okubo-Suzuki R, Nomoto M, Ohkawa N, Nishizono H, Suzuki A, Matsuo M, Tsujimura S, Takahashi Y, Nagase M, Watabe AM, Sasahara M, Kato F, Inokuchi K. Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science. 2017;355:398-403. https://doi.org/10.1126/science.aal2690
  7. Choi JH, Sim SE, Kim JI, Choi DI, Oh J, Ye S, Lee J, Kim T, Ko HG, Lim CS, Kaang BK. Interregional synaptic maps among engram cells underlie memory formation. Science. 2018;360:430-435. https://doi.org/10.1126/science.aas9204
  8. Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, Tomm NK, Turi GF, Losonczy A, Hen R. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron. 2014;83:189-201. https://doi.org/10.1016/j.neuron.2014.05.018
  9. Abdou K, Shehata M, Choko K, Nishizono H, Matsuo M, Muramatsu SI, Inokuchi K. Synapse-specific representation of the identity of overlapping memory engrams. Science. 2018;360:1227-1231. https://doi.org/10.1126/science.aat3810
  10. Rashid AJ, Yan C, Mercaldo V, Hsiang HL, Park S, Cole CJ, De Cristofaro A, Yu J, Ramakrishnan C, Lee SY, Deisseroth K, Frankland PW, Josselyn SA. Competition between engrams influences fear memory formation and recall. Science. 2016;353:383-387. https://doi.org/10.1126/science.aaf0594
  11. Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S. Engrams and circuits crucial for systems consolidation of a memory. Science. 2017;356:73-78. https://doi.org/10.1126/science.aam6808
  12. Roy DS, Kitamura T, Okuyama T, Ogawa SK, Sun C, Obata Y, Yoshiki A, Tonegawa S. Distinct neural circuits for the formation and retrieval of episodic memories. Cell. 2017;170:1000-1012.e19. https://doi.org/10.1016/j.cell.2017.07.013
  13. Allen WE, DeNardo LA, Chen MZ, Liu CD, Loh KM, Fenno LE, Ramakrishnan C, Deisseroth K, Luo L. Thirst-associated preoptic neurons encode an aversive motivational drive. Science. 2017;357:1149-1155. https://doi.org/10.1126/science.aan6747
  14. Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, Tonegawa S. Island cells control temporal association memory. Science. 2014;343:896-901. https://doi.org/10.1126/science.1244634
  15. Ye X, Kapeller-Libermann D, Travaglia A, Inda MC, Alberini CM. Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci. 2017;20:52-61. https://doi.org/10.1038/nn.4443
  16. Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nat Neurosci. 2017;20:1377-1383. https://doi.org/10.1038/nn.4624
  17. Inoue KI, Takada M, Matsumoto M. Neuronal and behavioural modulations by pathway-selective optogenetic stimulation of the primate oculomotor system. Nat Commun. 2015;6:8378. https://doi.org/10.1038/ncomms9378
  18. Kim S, Yu NK, Shim KW, Kim JI, Kim H, Han DH, Choi JE, Lee SW, Choi DI, Kim MW, Lee DS, Lee K, Galjart N, Lee YS, Lee JH, Kaang BK. Remote memory and cortical synaptic plasticity require neuronal CCCTC-Binding Factor (CTCF). J Neurosci. 2018;38:5042-5052. https://doi.org/10.1523/JNEUROSCI.2738-17.2018
  19. Kang SJ, Kim S, Lee J, Kwak C, Lee K, Zhuo M, Kaang BK. Inhibition of anterior cingulate cortex excitatory neuronal activity induces conditioned place preference in a mouse model of chronic inflammatory pain. Korean J Physiol Pharmacol. 2017;21:487-493. https://doi.org/10.4196/kjpp.2017.21.5.487
  20. El-Boustani S, Ip JPK, Breton-Provencher V, Knott GW, Okuno H, Bito H, Sur M. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science. 2018;360:1349-1354. https://doi.org/10.1126/science.aao0862
  21. Markowitz JE, Gillis WF, Beron CC, Neufeld SQ, Robertson K, Bhagat ND, Peterson RE, Peterson E, Hyun M, Linderman SW, Sabatini BL, Datta SR. The striatum organizes 3D behavior via moment-to-moment action selection. Cell. 2018;174:44-58.e17. https://doi.org/10.1016/j.cell.2018.04.019
  22. Dimitrov D, He Y, Mutoh H, Baker BJ, Cohen L, Akemann W, Knopfel T. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One. 2007;2:e440. https://doi.org/10.1371/journal.pone.0000440
  23. Siegel MS, Isacoff EY. A genetically encoded optical probe of membrane voltage. Neuron. 1997;19:735-741. https://doi.org/10.1016/S0896-6273(00)80955-1
  24. Ataka K, Pieribone VA. A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J. 2002;82(1 Pt 1):509-516. https://doi.org/10.1016/S0006-3495(02)75415-5
  25. Kang BE, Baker BJ. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions. Sci Rep. 2016;6:23865. https://doi.org/10.1038/srep23865
  26. Jin L, Han Z, Platisa J, Wooltorton JR, Cohen LB, Pieribone VA. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. 2012;75:779-785. https://doi.org/10.1016/j.neuron.2012.06.040
  27. Kannan M, Vasan G, Pieribone VA. Optimizing strategies for developing genetically encoded voltage indicators. Front Cell Neurosci. 2019;13:53. https://doi.org/10.3389/fncel.2019.00053
  28. Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knopfel T. Genetically encoded fluorescent sensors of membrane potential. Brain Cell Biol . 2008;36:53-67. https://doi.org/10.1007/s11068-008-9026-7
  29. Baker BJ, Lee H, Pieribone VA, Cohen LB, Isacoff EY, Knopfel T, Kosmidis EK. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Methods. 2007;161:32-38. https://doi.org/10.1016/j.jneumeth.2006.10.005
  30. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell. 2016;166:245-257. https://doi.org/10.1016/j.cell.2016.05.031
  31. Platisa J, Vasan G, Yang A, Pieribone VA. Directed evolution of key residues in fluorescent protein inverses the polarity of voltage sensitivity in the genetically encoded indicator ArcLight. ACS Chem Neurosci. 2017;8:513-523. https://doi.org/10.1021/acschemneuro.6b00234
  32. Iamshanova O, Mariot P, Lehen'kyi V, Prevarskaya N. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines. Eur Biophys J. 2016;45:765-777. https://doi.org/10.1007/s00249-016-1173-7
  33. Kaihara A, Sunami A, Kurokawa J, Furukawa T. A genetically encoded bioluminescent indicator for the sodium channel activity in living cells. J Am Chem Soc. 2009;131:4188-4189. https://doi.org/10.1021/ja808669y
  34. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000.
  35. Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature. 1996;383:634-637. https://doi.org/10.1038/383634a0
  36. Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron. 2012;73:862-885. https://doi.org/10.1016/j.neuron.2012.02.011
  37. Inoue M, Takeuchi A, Horigane S, Ohkura M, Gengyo-Ando K, Fujii H, Kamijo S, Takemoto-Kimura S, Kano M, Nakai J, Kitamura K, Bito H. Rational design of a high-affinity, fast, red calcium indicator R-CaMP2. Nat Methods. 2015;12:64-70. https://doi.org/10.1038/nmeth.3185
  38. Kamijo S, Ishii Y, Horigane SI, Suzuki K, Ohkura M, Nakai J, Fujii H, Takemoto-Kimura S, Bito H. A critical neurodevelopmental role for L-type voltage-gated calcium channels in neurite extension and radial migration. J Neurosci. 2018;38:5551-5566. https://doi.org/10.1523/JNEUROSCI.2357-17.2018
  39. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4:517-529. https://doi.org/10.1038/nrm1155
  40. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11-21. https://doi.org/10.1038/35036035
  41. Atlas D. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu Rev Biochem. 2013;82:607-635. https://doi.org/10.1146/annurev-biochem-080411-121438
  42. Kim HL, Chang YJ, Lee SM, Hong YS. Genomic structure of the regulatory region of the voltage-gated calcium channel alpha 1D. Exp Mol Med . 1998;30:246-251. https://doi.org/10.1038/emm.1998.36
  43. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295-322. https://doi.org/10.1146/annurev.pharmtox.011008.145533
  44. Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev. 2015;95:1383-1436. https://doi.org/10.1152/physrev.00020.2014
  45. Bagur R, Hajnoczky G. Intracellular $Ca^{2+}$ sensing: its role in calcium homeostasis and signaling. Mol Cell. 2017;66:780-788. https://doi.org/10.1016/j.molcel.2017.05.028
  46. Zahradnik I, Gyorke S, Zahradnikova A. Calcium activation of ryanodine receptor channels--reconciling RyR gating models with tetrameric channel structure. J Gen Physiol. 2005;126:515-527. https://doi.org/10.1085/jgp.200509328
  47. Kania E, Roest G, Vervliet T, Parys JB, Bultynck G. IP3 receptormediated calcium signaling and its role in autophagy in cancer. Front Oncol . 2017;7:140. https://doi.org/10.3389/fonc.2017.00140
  48. Glancy B, Balaban RS. Role of mitochondrial $Ca^{2+}$ in the regulation of cellular energetics. Biochemistry. 2012;51:2959-2973. https://doi.org/10.1021/bi2018909
  49. Schwaller B. Cytosolic $Ca^{2+}$ buffers. Cold Spring Harb Perspect Biol. 2010;2:a004051. https://doi.org/10.1101/cshperspect.a004051
  50. Larkum ME, Watanabe S, Nakamura T, Lasser-Ross N, Ross WN. Synaptically activated $Ca^{2+}$ waves in layer 2/3 and layer 5 rat neocortical pyramidal neurons. J Physiol. 2003;549(Pt 2):471-488. https://doi.org/10.1113/jphysiol.2002.037614
  51. Reddish FN, Miller CL, Gorkhali R, Yang JJ. Calcium dynamics mediated by the endoplasmic/sarcoplasmic reticulum and related diseases. Int J Mol Sci. 2017;18:E1024. https://doi.org/10.3390/ijms18051024
  52. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962;59:223-239. https://doi.org/10.1002/jcp.1030590302
  53. Brown JE, Cohen LB, De Weer P, Pinto LH, Ross WN, Salzberg BM. Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys J. 1975;15:1155-1160. https://doi.org/10.1016/S0006-3495(75)85891-7
  54. Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods. 2008;46:143-151. https://doi.org/10.1016/j.ymeth.2008.09.025
  55. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. Fluorescent indicators for $Ca^{2+}$ based on green fluorescent proteins and calmodulin. Nature. 1997;388:882-887. https://doi.org/10.1038/42264
  56. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin HB, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal $Ca^{2+}$ indicator GCaMP2. Proc Natl Acad Sci U S A. 2006;103:4753-4758. https://doi.org/10.1073/pnas.0509378103
  57. Akerboom J, Rivera JD, Guilbe MM, Malave EC, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem. 2009;284:6455-6464. https://doi.org/10.1074/jbc.M807657200
  58. Tang S, Wong HC, Wang ZM, Huang Y, Zou J, Zhuo Y, Pennati A, Gadda G, Delbono O, Yang JJ. Design and application of a class of sensors to monitor $Ca^{2+}$ dynamics in high $Ca^{2+}$ concentration cellular compartments. Proc Natl Acad Sci U S A . 2011;108:16265-16270. https://doi.org/10.1073/pnas.1103015108
  59. Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol. 2003;21:1387-1395. https://doi.org/10.1038/nbt896
  60. Nakamura T, Barbara JG, Nakamura K, Ross WN. Synergistic release of $Ca^{2+}$ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron. 1999;24:727-737. https://doi.org/10.1016/S0896-6273(00)81125-3
  61. Perez Koldenkova V, Nagai T. Genetically encoded $Ca^{2+}$ indicators: properties and evaluation. Biochim Biophys Acta. 2013;1833:1787-1797. https://doi.org/10.1016/j.bbamcr.2013.01.011
  62. Nakai J, Ohkura M, Imoto K. A high signal-to-noise $Ca^{2+}$ probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19:137-141. https://doi.org/10.1038/84397
  63. Reiff DF, Ihring A, Guerrero G, Isacoff EY, Joesch M, Nakai J, Borst A. In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci. 2005;25:4766-4778. https://doi.org/10.1523/JNEUROSCI.4900-04.2005
  64. Ohkura M, Matsuzaki M, Kasai H, Imoto K, Nakai J. Genetically encoded bright $Ca^{2+}$ probe applicable for dynamic $Ca^{2+}$ imaging of dendritic spines. Anal Chem. 2005;77:5861-5869. https://doi.org/10.1021/ac0506837
  65. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF, Nakano M, Abdelfattah AS, Fujiwara M, Ishihara T, Nagai T, Campbell RE. An expanded palette of genetically encoded $Ca^{2+}$ indicators. Science. 2011;333:1888-1891. https://doi.org/10.1126/science.1208592
  66. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderon NC, Esposti F, Borghuis BG, Sun XR, Gordus A, Orger MB, Portugues R, Engert F, Macklin JJ, Filosa A, Aggarwal A, Kerr RA, Takagi R, Kracun S, et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci. 2012;32:13819-13840. https://doi.org/10.1523/JNEUROSCI.2601-12.2012
  67. Helassa N, Zhang XH, Conte I, Scaringi J, Esposito E, Bradley J, Carter T, Ogden D, Morad M, Torok K. Fast-response calmodulinbased fluorescent indicators reveal rapid intracellular calcium dynamics. Sci Rep. 2015;5:15978. https://doi.org/10.1038/srep15978
  68. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295-300. https://doi.org/10.1038/nature12354
  69. Barnett LM, Hughes TE, Drobizhev M. Deciphering the molecular mechanism responsible for GCaMP6m's $Ca^{2+}$-dependent change in fluorescence. PLoS One. 2017;12:e0170934. https://doi.org/10.1371/journal.pone.0170934
  70. Dana H, Mohar B, Sun Y, Narayan S, Gordus A, Hasseman JP, Tsegaye G, Holt GT, Hu A, Walpita D, Patel R, Macklin JJ, Bargmann CI, Ahrens MB, Schreiter ER, Jayaraman V, Looger LL, Svoboda K, Kim DS. Sensitive red protein calcium indicators for imaging neural activity. Elife. 2016;5:e12727. https://doi.org/10.7554/eLife.12727
  71. Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense $Ca^{2+}$. Proc Natl Acad Sci U S A. 2001;98:3197-3202. https://doi.org/10.1073/pnas.051636098
  72. Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A. 1999;96:11241-11246. https://doi.org/10.1073/pnas.96.20.11241
  73. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem. 2001;276:29188-29194. https://doi.org/10.1074/jbc.M102815200
  74. Miyawaki A, Griesbeck O, Heim R, Tsien RY. Dynamic and quantitative $Ca^{2+}$ measurements using improved cameleons. Proc Natl Acad Sci U S A. 1999;96:2135-2140. https://doi.org/10.1073/pnas.96.5.2135
  75. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. Expanded dynamic range of fluorescent indicators for $Ca^{2+}$ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A. 2004;101:10554-10559. https://doi.org/10.1073/pnas.0400417101
  76. Horikawa K, Yamada Y, Matsuda T, Kobayashi K, Hashimoto M, Matsu-ura T, Miyawaki A, Michikawa T, Mikoshiba K, Nagai T. Spontaneous network activity visualized by ultrasensitive $Ca^{2+}$ indicators, yellow Cameleon-Nano. Nat Methods. 2010;7:729-732. https://doi.org/10.1038/nmeth.1488
  77. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V, Baker D, Tsien RY. $Ca^{2+}$ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol. 2006;13:521-530. https://doi.org/10.1016/j.chembiol.2006.03.007
  78. Heim N, Griesbeck O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem. 2004;279:14280-14286. https://doi.org/10.1074/jbc.M312751200
  79. Mank M, Reiff DF, Heim N, Friedrich MW, Borst A, Griesbeck O. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J. 2006;90:1790-1796. https://doi.org/10.1529/biophysj.105.073536
  80. Waldeck-Weiermair M, Alam MR, Khan MJ, Deak AT, Vishnu N, Karsten F, Imamura H, Graier WF, Malli R. Spatiotemporal correlations between cytosolic and mitochondrial $Ca^{2+}$ signals using a novel red-shifted mitochondrial targeted cameleon. PLoS One. 2012;7:e45917. https://doi.org/10.1371/journal.pone.0045917
  81. Hires SA, Tian L, Looger LL. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 2008;36:69-86. https://doi.org/10.1007/s11068-008-9029-4
  82. Mank M, Griesbeck O. Genetically encoded calcium indicators. Chem Rev. 2008;108:1550-1564. https://doi.org/10.1021/cr078213v
  83. Muto A, Ohkura M, Abe G, Nakai J, Kawakami K. Real-time visualization of neuronal activity during perception. Curr Biol. 2013;23:307-311. https://doi.org/10.1016/j.cub.2012.12.040
  84. Lin MZ, Schnitzer MJ. Genetically encoded indicators of neuronal activity. Nat Neurosci. 2016;19:1142-1153. https://doi.org/10.1038/nn.4359
  85. Helassa N, Podor B, Fine A, Torok K. Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics. Sci Rep. 2016;6:38276. https://doi.org/10.1038/srep38276
  86. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M, Tolo J, Gordus A, Orger MB, Severi KE, Macklin JJ, Patel R, Pulver SR, Wardill TJ, Fischer E, Schuler C, Chen TW, Sarkisyan KS, Marvin JS, Bargmann CI, Kim DS, et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci. 2013;6:2. https://doi.org/10.3389/fnmol.2013.00002
  87. Higuchi-Sanabria R, Garcia EJ, Tomoiaga D, Munteanu EL, Feinstein P, Pon LA. Characterization of fluorescent proteins for threeand four-color live-cell imaging in S. cerevisiae. PLoS One. 2016;11:e0146120. https://doi.org/10.1371/journal.pone.0146120
  88. Waldchen S, Lehmann J, Klein T, van de Linde S, Sauer M. Lightinduced cell damage in live-cell super-resolution microscopy. Sci Rep. 2015;5:15348. https://doi.org/10.1038/srep15348
  89. Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nat Methods. 2005;2:905-909. https://doi.org/10.1038/nmeth819
  90. Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, Refaeli R, Horn H, Regev L, Groysman M, London M, Goshen I. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell. 2018;174:59-71.e14. https://doi.org/10.1016/j.cell.2018.05.002
  91. Pawley JB. Handbook of biological confocal microscopy. 3rd ed. Boston: Springer US; 2006.
  92. Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y, Jia H, Fan M, Zhou Z, Zhang Y, Wang A, Chen L, Cheng H. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods. 2017;14:713-719. https://doi.org/10.1038/nmeth.4305
  93. Zhang L, Liang B, Barbera G, Hawes S, Zhang Y, Stump K, Baum I, Yang Y, Li Y, Lin DT. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals. Curr Protoc Neurosci. 2019;86:e56. https://doi.org/10.1002/cpns.56
  94. Doi A, Oketani R, Nawa Y, Fujita K. High-resolution imaging in two-photon excitation microscopy using in situ estimations of the point spread function. Biomed Opt Express. 2017;9:202-213. https://doi.org/10.1364/BOE.9.000202
  95. Kobat D, Horton NG, Xu C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt. 2011;16:106014. https://doi.org/10.1117/1.3646209
  96. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7:603-614. https://doi.org/10.1038/nmeth.1483
  97. UCLA Miniscope. Overview of system components [Internet]. UCLA Miniscope [cited 2018 Nov 11]. Available from: http://miniscope.org/index.php/Overview_of_System_Components.
  98. Resendez SL, Jennings JH, Ung RL, Namboodiri VM, Zhou ZC, Otis JM, Nomura H, McHenry JA, Kosyk O, Stuber GD. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc. 2016;11:566-597. https://doi.org/10.1038/nprot.2016.021
  99. Yan W, Peng X, Lin D, Wang Q, Gao J, Luo T, Zhou J, Ye T, Qu J, Niu H. Fluorescence microendoscopy imaging based on GRIN lenses with one- and two-photon excitation modes. Front Optoelectron. 2015;8:177-182. https://doi.org/10.1007/s12200-015-0503-1
  100. Yan W, Peng X, Lin D, Wang Q, Gao J, Zhou J, Ye T, Qu J, Niu H. Two-photon excited fluorescence microendoscopic imaging using a GRIN lens. In: Konig K, editor. Multiphoton microscopy in the biomedical sciences XV. Bellingham: SPIE; 2015.
  101. Shuman T, Aharoni D, Cai DJ, Lee CR, Chavlis S, Taxidis J, Flores SE, Cheng K, Javaherian M, Kaba CC, Shtrahman M, Bakhurin KI, Masmanidis S, Khakh BS, Poirazi P, Silva AJ, Golshani P. Breakdown of spatial coding and neural synchronization in epilepsy. bioRxiv. 2018. doi: 10.1101/358580.
  102. Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, Gamal AE, Schnitzer MJ. Miniaturized integration of a fluorescence microscope. Nat Methods. 2011;8:871-878. https://doi.org/10.1038/nmeth.1694
  103. Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T. A synaptic threshold mechanism for computing escape decisions. Nature. 2018;558:590-594. https://doi.org/10.1038/s41586-018-0244-6
  104. Helmchen F, Fee MS, Tank DW, Denk W. A miniature headmounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron. 2001;31:903-912. https://doi.org/10.1016/S0896-6273(01)00421-4
  105. Silva AJ. Miniaturized two-photon microscope: seeing clearer and deeper into the brain. Light Sci Appl. 2017;6:e17104. https://doi.org/10.1038/lsa.2017.104
  106. Koizumi K, Inoue M, Chowdhury S, Bito H, Yamanaka A, Ishizuka T, Yawo H. Functional emergence of a column-like architecture in layer 5 of mouse somatosensory cortex in vivo. J Physiol Sci. 2019;69:65-77. https://doi.org/10.1007/s12576-018-0618-4
  107. Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wolfel M, McCormick DA, Reid RC, Levene MJ. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron. 2013;80:900-913. https://doi.org/10.1016/j.neuron.2013.07.052
  108. Chia TH, Levene MJ. Microprisms for in vivo multilayer cortical imaging. J Neurophysiol. 2009;102:1310-1314. https://doi.org/10.1152/jn.91208.2008
  109. Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S, Tajik A, Fritz C, Trulson M, Otte SL. Simultaneous optogenetics and cellular resolution calcium imaging during active behavior using a miniaturized microscope. Front Neurosci. 2018;12:496. https://doi.org/10.3389/fnins.2018.00496
  110. Briggman KL, Kristan WB. Multifunctional pattern-generating circuits. Annu Rev Neurosci. 2008;31:271-294. https://doi.org/10.1146/annurev.neuro.31.060407.125552
  111. Romano SA, Perez-Schuster V, Jouary A, Boulanger-Weill J, Candeo A, Pietri T, Sumbre G. An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics. PLoS Comput Biol . 2017;13:e1005526. https://doi.org/10.1371/journal.pcbi.1005526
  112. Mukamel EA, Nimmerjahn A, Schnitzer MJ. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron. 2009;63:747-760. https://doi.org/10.1016/j.neuron.2009.08.009
  113. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J, Pfau D, Reardon T, Mu Y, Lacefield C, Yang W, Ahrens M, Bruno R, Jessell TM, Peterka DS, Yuste R, Paninski L. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron. 2016;89:285-299. https://doi.org/10.1016/j.neuron.2015.11.037
  114. Lu J, Li C, Singh-Alvarado J, Zhou ZC, Frohlich F, Mooney R, Wang F. MIN1PIPE: a miniscope 1-photon-based calcium imaging signal extraction pipeline. Cell Rep. 2018;23:3673-3684. https://doi.org/10.1016/j.celrep.2018.05.062
  115. Zhou P, Resendez SL, Rodriguez-Romaguera J, Jimenez JC, Neufeld SQ, Giovannucci A, Friedrich J, Pnevmatikakis EA, Stuber GD, Hen R, Kheirbek MA, Sabatini BL, Kass RE, Paninski L. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. Elife. 2018;7:e28728. https://doi.org/10.7554/eLife.28728
  116. Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL, Koay SA, Taxidis J, Najafi F, Gauthier JL, Zhou P, Khakh BS, Tank DW, Chklovskii DB, Pnevmatikakis EA. CaImAn an open source tool for scalable calcium imaging data analysis. Elife. 2019;8:e38173. https://doi.org/10.7554/eLife.38173
  117. Tegtmeier J, Brosch M, Janitzky K, Heinze HJ, Ohl FW, Lippert MT. CAVE: an open-source tool for combined analysis of headmounted calcium imaging and behavior in MATLAB. Front Neurosci. 2018;12:958. https://doi.org/10.3389/fnins.2018.00958
  118. Friedrich J, Zhou P, Paninski L. Fast online deconvolution of calcium imaging data. PLoS Comput Biol. 2017;13:e1005423. https://doi.org/10.1371/journal.pcbi.1005423
  119. Mao BQ, Hamzei-Sichani F, Aronov D, Froemke RC, Yuste R. Dynamics of spontaneous activity in neocortical slices. Neuron. 2001;32:883-898. https://doi.org/10.1016/S0896-6273(01)00518-9
  120. Greenberg DS, Houweling AR, Kerr JN. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nat Neurosci. 2008;11:749-751. https://doi.org/10.1038/nn.2140
  121. Holekamp TF, Turaga D, Holy TE. Fast three-dimensional fluorescence imaging of activity in neural populations by objectivecoupled planar illumination microscopy. Neuron. 2008;57:661-672. https://doi.org/10.1016/j.neuron.2008.01.011
  122. Sasaki T, Takahashi N, Matsuki N, Ikegaya Y. Fast and accurate detection of action potentials from somatic calcium fluctuations. J Neurophysiol. 2008;100:1668-1676. https://doi.org/10.1152/jn.00084.2008
  123. Balkenius A, Johansson AJ, Balkenius C. Comparing analysis methods in functional calcium imaging of the insect brain. PLoS One. 2015;10:e0129614. https://doi.org/10.1371/journal.pone.0129614
  124. Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, Flores SE, Kim I, Sano Y, Zhou M, Baumgaertel K, Lavi A, Kamata M, Tuszynski M, Mayford M, Golshani P, et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534:115-118. https://doi.org/10.1038/nature17955
  125. Sheintuch L, Rubin A, Brande-Eilat N, Geva N, Sadeh N, Pinchasof O, Ziv Y. Tracking the same neurons across multiple days in $Ca^{2+}$ imaging data. Cell Rep. 2017;21:1102-1115. https://doi.org/10.1016/j.celrep.2017.10.013

Cited by

  1. Possibilities of using a miniature fluorescence microscope vol.224, 2020, https://doi.org/10.1051/e3sconf/202022402005
  2. Genetically encoded single circularly permuted fluorescent protein-based intensity indicators vol.53, pp.11, 2020, https://doi.org/10.1088/1361-6463/ab5dd8
  3. Real-time in vivo detection techniques for neurotransmitters: a review vol.145, pp.19, 2020, https://doi.org/10.1039/d0an01175d
  4. Emerging imaging methods to study whole-brain function in rodent models vol.11, pp.1, 2021, https://doi.org/10.1038/s41398-021-01575-5
  5. Contribution of animal models toward understanding resting state functional connectivity vol.245, 2019, https://doi.org/10.1016/j.neuroimage.2021.118630