DOI QR코드

DOI QR Code

Research advances in reproduction for dairy goats

  • Luo, Jun (Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University) ;
  • Wang, Wei (College of Animal Science and Veterinary Medicine, Shenyang Agricultural University) ;
  • Sun, Shuang (Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University)
  • 투고 : 2019.06.12
  • 심사 : 2019.07.03
  • 발행 : 2019.08.01

초록

Considerable progress in reproduction of dairy goats has been made, with advances in reproductive technology accelerating dairy goat production since the 1980s. Reproduction in goats is described as seasonal. The onset and length of the breeding season is dependent on various factors such as breed, climate, physiological stage, male effect, breeding system, and photoperiod. The reproductive physiology of goats was investigated extensively, including hypothalamic and pituitary control of the ovary related to estrus behavior and cyclicity etc. Photoperiodic treatments coupled with the male effect allow hormone-free synchronization of ovulation, but the kidding rate is still less than for hormonal treatments. Different protocols have been developed to meet the needs and expectations of producers; dairy industries are subject to growing demands for year round production. Hormonal treatments for synchronization of estrus and ovulation in combination with artificial insemination (AI) or natural mating facilitate out-of-season breeding and the grouping of the kidding period. The AI with fresh or frozen semen has been increasingly adopted in the intensive production system, this is perhaps the most powerful tool that reproductive physiologists and geneticists have provided the dairy goat industry with for improving reproductive efficiency, genetic progress and genetic materials transportation. One of the most exciting developments in the reproduction of dairy animals is embryo transfer (ET), the so-called second generation reproductive biotechnology following AI. Multiple ovulation and ET (MOET) program in dairy goats combining with estrus synchronization (ES) and AI significantly increase annual genetic improvement by decreasing the generation interval. Based on the advances in reproduction technologies that have been utilized through experiments and investigation, this review will focus on the application of these technologies and how they can be used to promote the dairy goat research and industry development in the future.

키워드

참고문헌

  1. Montalbano M, Segreto R, Di Gerlando R, Mastrangelo S, Sardina MT. Quantitative determination of casein genetic variants in goat milk: Application in Girgentana dairy goat breed. Food Chem 2016;192:760-4. https://doi.org/10.1016/j.foodchem.2015.07.075
  2. Qi Y, Luo J, Han XF, et al. Genetic diversity and relationships of 10 Chinese goat breeds in the Middle and Western China. Small Rumin Res 2009;82:88-93. https://doi.org/10.1016/j.smallrumres.2009.01.015
  3. Cobb M. Generation: the seventeenth-century scientists who unraveled the secrets of sex, life, and growth. New York, USA: Bloomsbury Publishing; 2006.
  4. Smith MF, Geisert RD, Parrish JJ. Reproduction in domestic ruminants during the past 50 yr: discovery to application. J Anim Sci 2018;96:2952-70. https://doi.org/10.1093/jas/sky139
  5. Nagamalleswari Y, Iyyangar MP, Gopinath S, Raghavender KBP. Biometrical relationship of ovaries and pituitary during prepubertal period in goat (Capra hircus). Indian J Anim Sci 2004;74:256-8.
  6. Graff KJ, Meintjes M, Han Y, et al. Comparing follicle stimulating hormone from two commercial sources for oocyte production from out-of-season dairy goats. J Dairy Sci 2000;83:484-7. https://doi.org/10.3168/jds.S0022-0302(00)74907-1
  7. Leyvaocariz H, Munro C, Stabenfeldt GH. Serum LH, FSH, estradiol-17-Beta and progesterone profiles of native and crossbred goats in a tropical semiarid zone of Venezuela during the estrous-cycle. Anim Reprod Sci 1995;39:49-58. https://doi.org/10.1016/0378-4320(95)01377-C
  8. Leboeuf B, Delgadillo JA, Manfredi E, et al. Controlling reproduction in selection schemes of dairy goats. Prod Anim 2008;21:391-402.
  9. Zhao Y, Luo N, Tan Q, Zhang Y, An B. The dynamic expression patterns and correlation of Tet1 and WNT pathway genes in early fetal tissues of goat. Reprod Domest Anim 2017;52:65.
  10. Gootwine E, Pollott G. Factors affecting milk production in improved Awassi dairy ewes. Anim Sci 2000;71:607-15. https://doi.org/10.1017/S1357729800055387
  11. Kominakis A, Rogdakis E, Koutsotolis K. Genetic parameters for milk yield and litter size in Boutsico dairy sheep. Can J Anim Sci 1998;78:525-32. https://doi.org/10.4141/A98-049
  12. Ligda C, Gabriilidis G, Papadopoulos T, Georgoudis A. Estimation of genetic parameters for production traits of Chios sheep using a multitrait animal model. Livest Sci 2000;66:217-21. https://doi.org/10.1016/S0301-6226(00)00184-6
  13. Hamann H, Horstick A, Wessels A, Distl O. Estimation of genetic parameters for test day milk production, somatic cell score and litter size at birth in East Friesian ewes. Livest Prod Sci 2004;87:153-60. https://doi.org/10.1016/j.livprodsci.2003.09.015
  14. Avdi M, Banos G, Kouttos A, Bodin L, Chemineau P. Sources of variation and genetic profile of spontaneous, out-of-season ovulatory activity in the Chios sheep. Genet Sel Evol 2003;35:65-76. https://doi.org/10.1186/1297-9686-35-1-65
  15. Leboeuf B, Manfredi E, Boue P, et al. Artificial insemination of dairy goats in France. Livest Prod Sci 1998;55:193-203. https://doi.org/10.1016/S0301-6226(98)00140-7
  16. Martin GB, Milton JTB, Davison RH, Hunzicker GEB, Lindsay DR, Blache D. Natural methods for increasing reproductive efficiency in small ruminants. Anim Reprod Sci 2004;(82-83):231-45. https://doi.org/10.1016/j.anireprosci.2004.05.014
  17. Pellicer-Rubio MT, Leboeuf B, Bernelas D, et al. High fertility using artificial insemination during deep anoestrus after induction and synchronization of ovulatory activity by the "male effect" in lactating goats subjected to treatment with artificial long days and progestagens. Anim Reprod Sci 2008;109:172-88. https://doi.org/10.1016/j.anireprosci.2007.11.026
  18. Pelletier J, Chemineau P, Delgadillo JA. Seasonality of sexual activity and its photoperiodic control in the adult ram and he-goat. In: Proceedings of 11th International Congress Animal Reproduction Artificial Insemination; 1988 Jun 25-30: Dublin, Ireland. vol. 5, p. 214-9.
  19. Delgadillo JA, Leboeuf B, Chemineau P. Decrease in the seasonality of sexual behavior and sperm production in bucks by exposure to short photoperiodic cycles. Theriogenology 1991;36:755-70. https://doi.org/10.1016/0093-691X(91)90341-A
  20. Beatty RA. The genetics of the mammalian gamete. Biol Rev Camb Philos Soc 1970;45:73-119. https://doi.org/10.1111/j.1469-185X.1970.tb01076.x
  21. Leboeuf B, Furstoss V, Guillouet P, Boue P. Production of artificial insemination doses from Alpine and Saanen bucks under various photoperiodic cycles. S Afr J Anim Sci 2004;34:230-2.
  22. Pellicer-Rubio MT, Leboeuf B, Bernelas D, et al. Highly synchronous and fertile reproductive activity induced by the male effect during deep anoestrus in lactating goats subjected to treatment with artificially long days followed by a natural photoperiod. Anim Reprod Sci 2007;98:241-58. https://doi.org/10.1016/j.anireprosci.2006.03.002
  23. Chemineau P, Malpaux B, Delgadillo JA, Guerin Y, Pelletier J. Control of sheep and goat reproduction: use of light and melatonin. Anim Reprod Sci 1992;30:157-84. https://doi.org/10.1016/0378-4320(92)90010-B
  24. Abecia JA, Forcada F, Gonzales-Bulnes A. Hormonal control of reproduction in small ruminants. Anim Reprod Sci 2012;130:173-9. https://doi.org/10.1016/j.anireprosci.2012.01.011
  25. Zaja IZ, Vince S, Milinkovic-Tur S, et al. Exogenous melatonin influences distribution of French Alpine buck spermatozoa in morphometrically distinct subpopulatons during the nonbreeding season. Anim Reprod Sci 2018;192:154-63. https://doi.org/10.1016/j.anireprosci.2018.03.003
  26. Zarazaga LA, Gatica MC, Hernandez H, Chemineau P, Delgadillo JA, Guzman JL. Photoperiod-treated bucks are equal to melatonin-treated bucks for inducing reproductive behavior and physiological functions via the "male effect" in Mediterranean goats. Anim Reprod Sci 2019;202:58-64. https://doi.org/10.1016/j.anireprosci.2019.01.008
  27. Ivanov II, Iwanoff E. De la fecondation artificielle chez les mammiferes [artificial insemination of mammals]. Arch Sci Biol 1907;12:377-511.
  28. Whckersham GH. The milk goat dairy, 3rd edition. Wichita, KS, USA: Lassen printer; 1919. pp. 25-8.
  29. Dauzier L. Artificial insemination in the goat. In: Dalling T, editor. Encyclopedia of veterinary medicine. Edinburgh, UK: W. Green and Son, 1966; pp. 269-71.
  30. Leboeuf B, Guillouet P, Bonne JL, Forgerit Y, Magistrini M. Goat semen preserved at $4^{\circ}C$ until 76 hours before artificial insemination: different attempts to maintain the fertility. S Afr J Anim Sci 2004;34:233-5.
  31. Corteel JM. Production, storage and artificial insemination of goat semen. In: Proceeding of the Symposium "Management of Reproduction in Sheep and Goats"; 1977, Jul 24-25; Madison, WI, USA. pp. 41-57.
  32. Moore SG, Hasler JF. A 100-year review: reproductive technologies in dairy science. J Dairy Sci 2017;100:10314-31. https://doi.org/10.3168/jds.2017-13138
  33. Liu YT, Warme PK. Computerized evaluation of sperm cell motility. Comput Biomed Res 1977;10:127-38. https://doi.org/10.1016/0010-4809(77)90030-1
  34. Giriboni J, Gokdal O, Eren V, Yarali E, Santiago-Moreno J, Ungerfeld R. Daily administration of a GnRH analogue enhances sperm quality in bucks during the non-breeding season. Anim Reprod Sci 2019;200:43-50. https://doi.org/10.1016/j.anireprosci.2018.11.009
  35. Wang W, Luo J, Sun S, et al. The effect of season on spermatozoa motility, plasma membrane and acrosome integrity in fresh and frozen-thawed semen from Xinong Saanen bucks. Reprod Domest Anim 2015;50:23-8. https://doi.org/10.1111/rda.12444
  36. Johnson LA, Flook JP, Look MV. Flow cytometry of X and Y chromosome-bearing sperm for DNA using an improved preparation method and staining with Hoechst 33342. Gamete Res 1987;17:203-12. https://doi.org/10.1002/mrd.1120170303
  37. Johnson LA, Seidel GE Jr. Proc. current status of sexing mammalian sperm. Theriogenology 1999;52:1267-484. https://doi.org/10.1016/S0093-691X(99)00215-0
  38. Johnson LA, Flook JP, Hawk HW. Sex preselection in rabbits: Live births from X and Y sperm separated by DNA and cell sorting. Biol Reprod 1989;41:199-203. https://doi.org/10.1095/biolreprod41.2.199
  39. Johnson LA. Method to preselect the sex of offspring. US Government, assignee; 1992. US Pat. No.5,135,759.
  40. DeJarnette JM, Nebel RL, Marshall CE. Evaluating the success of sex-sorted semen in US dairy herds from on farm records. Theriogenology 2009;71:49-58. https://doi.org/10.1016/j.theriogenology.2008.09.042
  41. Mikkola M, Taponen J. Quality and developmental rate of embryos produced with sex-sorted and conventional semen from superovulated dairy cattle. Theriogenology 2017;87:135-40. https://doi.org/10.1016/j.theriogenology.2016.08.013
  42. Parrilla I, Vazquez JM, Roca J, Martinez EA. Flow cytometry identification of x- and Y-chromosome-bearing goat spermatozoa. Reprod Domest Anim 2004;39:58-60. https://doi.org/10.1046/j.1439-0531.2003.00480.x
  43. Gao QH, Luo J, Sheng HJ, et al. Flow cytometric sexing of Xand Y-chromosome-bearing sperm in dairy goats and effects of laparoscopic insemination with low dose frozen sex-sorted semen (in Chinese). China Herbivore Sci 2009;2:16-8.
  44. Wang W. Study on breeding techniques, XY sperm sorting, copy number variation of Y-linked ZNF280BY in dairy goat (In Chinese) [Ph. D dissertation]. Yangling, Shaanxi, China: Northwest A&F University; 2015. pp. 45-54, 55-60.
  45. Moore NW. Multiple ovulation and ovum transfer in the goat. Proc Aust Sot Anim Prod 1974;10:246-9.
  46. Menchaca A, Miller V, Salveraglio V, Rubianes E. Endocrine, luteal and follicular responses after the use of the Short-Term Protocol to synchronize ovulation in goats. Anim Reprod Sci 2007;102:76-87. https://doi.org/10.1016/j.anireprosci.2006.10.001
  47. Fonseca JF, Bruschi JH, Santos IC, Viana JH, Magalhaes AC. Induction of estrus in non-lactating dairy goats with different estrous synchrony protocols. Anim Reprod Sci 2005;85:117-24. https://doi.org/10.1016/j.anireprosci.2004.03.005
  48. Armstrong DT, Evans G. Factors influencing success of embryo transfer in goats. Theriogenology 1983;19:31-42. https://doi.org/10.1016/0093-691X(83)90121-8
  49. Ishwar AK, Memon MA. Embryo transfer in sheep and goat: a review. Small Rumin Res 1996;19:35-43. https://doi.org/10.1016/0921-4488(95)00735-0
  50. Swelum AAA, Alowaimer AN, Abouheif MA. Use of fluorogestone acetate sponges or controlled internal drug release for estrus synchronization in ewes: effects of hormonal profiles and reproductive performance. Theriogenology 2015;84:498-503. https://doi.org/10.1016/j.theriogenology.2015.03.018
  51. Leboeuf B, Restall B, Salamon S. Production and storage of goat semen for artificial insemination. Anim Reprod Sci 2000; 62:113-41. https://doi.org/10.1016/S0378-4320(00)00156-1
  52. Lopez-Sebastian A, Gonzalez-Bulnes A, Carrizosa JA, et al. New estrus synchronization and artificial insemination protocol for goats based on male exposure, progesterone and cloprostenol during the non-breeding season. Theriogenology 2007;68:1081-7. https://doi.org/10.1016/j.theriogenology.2007.08.003
  53. Sauls JA, Voelz BE, Hill SL, Mendonca LGD, Stevenson JS. Increasing estrus expression in the lactating dairy cow. J Dairy Sci 2017;100:807-20. https://doi.org/10.3168/jds.2016-11519
  54. Sun S, Liu SM, Luo J, et al. Effects of repeated to an estrus synchronization protocol on reproductive parameters in dairy goats. Can J Anim Sci 2019 Jun 12 [Epub]. https://doi.org/10.1139/cjas-2017-0183.
  55. Baril G, Leboeuf B, Saumande J. Synchronization of estrus in goats: the relationship between time of occurrence of estrus and fertility following artificial insemination. Theriogenology 1993;40:621-8. https://doi.org/10.1016/0093-691X(93)90414-Z
  56. Martemucci G, D'Alessandro AG. Induction/synchronization of oestrus and ovulation in dairy goats with different short term treatments and fixed time intrauterine or exocervical insemination system. Anim Reprod Sci 2011;126:187-94. https://doi.org/10.1016/j.anireprosci.2011.05.011
  57. Menchaca A, dos Santos-Neto PC, Cuadro F, Souza-Neves M, Crispo M. From reproductive technologies to genome editing in small ruminants: an embryo's journey. In: Proceedings of the 10th International Ruminant Reproduction Symposium; Foz do Iguacu, PR, Brazil. 2018. pp. 984-95.
  58. Melican D, Gavin W. Repeat superovulation, non-surgical embryo recovery, and surgical embryo transfer in transgenic dairy goats. Theriogenology 2008;69:197-203. https://doi.org/10.1016/j.theriogenology.2007.09.012
  59. Chang ZL, Fan XZ, Luo MJ, Wu ZY, Tan JH. Factors affecting superovulation and embryo transfer in Boer goats. Asian- Australas J Anim Sci 2006;19:341-6. https://doi.org/10.5713/ajas.2006.341
  60. Cervantes MJ, Juarez ML, Mejia VO, Berruecos VJM, Vera AH, Valencia J. Use of fluorogestone acetate after breeding to reduce the effect of premature luteal regression in dairy goats when superovulation is induced with FSH. Anim Reprod Sci 2007;97:47-54. https://doi.org/10.1016/j.anireprosci.2006.01.008
  61. Elsden RP, Nelson LD, Seidel GE Jr. Superovulating cows with follicle stimulating hormone and pregnant mare's serum gonadotrophin. Theriogenology 1978;9:17-26. https://doi.org/10.1016/0093-691X(78)90049-3
  62. Amiridis GS, Cseh S. Assisted reproductive technologies in the reproductive management of small ruminants. Anim Reprod Sci 2012;130:152-61. https://doi.org/10.1016/j.anireprosci.2012.01.009
  63. Tervit HR, Gold PG, Mckenzie RD. Development of an effective goat embryo transfer regime. Proc NZ Sot Anim Prod 1986;46:233-6.
  64. Cognie Y. State of the art in sheep-goat embryo transfer. Theriogenology 1999;51:105-16. https://doi.org/10.1016/S0093-691X(98)00235-0
  65. Armstrong DT, Pfitzner AP, Wames GM, Seamark RF. Superovulation treatments and embryo transfer in Angora goats. J Reprod Fertil 1983;67:403-10. https://doi.org/10.1530/jrf.0.0670403
  66. Delcampo CH, Salas F, Gatica R, Delcampo MR. Different methods of superovulation using HAP extract in goats during breeding season. Theriogenology 1985;23:186(Abstract). https://doi.org/10.1016/0093-691X(85)90092-5
  67. Rosniha Y, Jainudeen MR, Nihayah M. Superovulation and egg recovery in goats in the tropics. Vet Rec 1992;130:97-9. https://doi.org/10.1136/vr.130.5.97
  68. Andriyanto A, Rahminiwati M, Boediono A, Manalu W. Optimum dose and time of pregnant mare serum gonadotropin injections in Kacang goats to increase endogenous secretion of estrogen and progesterone without superovulation response. Small Rumin Res 2017;149:147-53. https://doi.org/10.1016/j.smallrumres.2017.02.005
  69. Rowson LEA, Dowling DF. An apparatus for the extraction of fertilized eggs from the living cow. Vet Rec 1949;61:191.
  70. Hunter GL, Adams CE, Rowson LE. Inter-bred ovum transfer in sheep. J Agric Sci (Camb.) 1955;46:143-9. https://doi.org/10.1017/S0021859600039897
  71. Nuti LC, Minhas BS, Baker WC, Capehart JS, Marrack P. Superovulation and recovery of zygotes from Nubian and Alpine dairy goats. Theriogenology 1987;28:481-8. https://doi.org/10.1016/0093-691X(87)90252-4
  72. Elsden RP. Embryo collection by surgical means. In: Betteridge K, editor. Embryo transfer farm animals. Monograph No. 16. Ottawa, Canada: Agriculture Canada; 1977. pp. 10-2.
  73. BonDurant RH, Skirrow S, Anderson GB, Hanson F, Rogers WH. Non-surgical collection of blastocyst from dairygoats. Theriogenology 1984;22:423-31. https://doi.org/10.1016/0093-691X(84)90463-1
  74. Shin ST, Jang SK, Yang HS, et al. Laparoscopy vs. laparotomy for embryo transfer to produce transgenic goats (Capra hircus). J Vet Sci 2008;9:103-7. https://doi.org/10.4142/jvs.2008.9.1.103
  75. Fonseca JF, Souza-Fabjan JMG, Oliveira MEF, et al. Nonsurgical embryo recovery and transfer in sheep and goats. Theriogenology 2016;86:144-51. https://doi.org/10.1016/j.theriogenology.2016.04.025
  76. Lima-Verde JB, Lopes ES Jr, Teixeira DIA, et al. Transcervical embryo recovery in Saanen goats. S Afr J Anim Sci 2003;33:127-31. http://dx.doi.org/10.4314/sajas.v33i2.3766
  77. Greyling J. Applied reproductive physiology. In: Solaiman SG, editor. Goat science and production. Ames, IA, USA; 2010. pp. 150-1.
  78. Sudano MJ, Paschoal DM, Maziero RRD, et al. Improving postcryopreservation survival capacity: an embryo-focused approach. Anim Reprod 2013;10:160-7.
  79. Seidel GE Jr. Lessons from reproductive technology research. Annu Rev Anim Biosci 2015;3:467-87. https://doi.org/10.1146/annurev-animal-031412-103709
  80. Morato R, Romaguera R, Izquierdo D, Paramio MT, Mogas T. Vitrification of in vitro produced goat blastocysts: effects of oocyte donor age and development stage. Cryobiology 2011;63:240-4. https://doi.org/10.1016/j.cryobiol.2011.09.002
  81. Youngs CR. Cryopreservation of preimplantation embryos of cattle, sheep, and goats. J Vis Exp 2011;54:e2764. https://doi.org/10.3791/2764
  82. Arav A. Cryopreservation of oocytes and embryos. Theriogenology 2014;81:96-102. https://doi.org/10.1016/j.theriogenology.2013.09.011
  83. Warwick BL, Barry RO, Horlacher WR. Results of mating rams to Angora female goats. In: Proceedings of 27th Annual Meeting of American Society of Animal Production; 1934. pp. 225-7.
  84. Flores-Foxworth G, McBride BM, Kraemer DC, Nuti LC. A comparison between laparoscopic and transcervical embryo collection and transfer in goats. Theriogenology 1992;37:213 (abstract). https://doi.org/10.1016/0093-691X(92)90282-V
  85. Moore NW, Eppleston J. Embryo transfer in the Angora goat. Aust J Agric Res 1979;30: 973-81. https://doi.org/10.1071/AR9790973
  86. Bilton RJ, Moore NW. In vitro culture, storage and transfer of goat embryos. Aust J Biol Sci 1976;29:125-9. https://doi.org/10.1071/BI9760125
  87. Brebion P, Baril G, Cognie Y, Vallet JC. Embryo transfer in sheep and goat. Ann Zoot 1992;41:331-9. https://doi.org/10.1051/animres:19920313
  88. Guignot F, Bouttier A, Baril G, et al. Improved vitrification methods allowing direct transfer of goat embryos. Theriogenology 2006;66:1004-11. https://doi.org/10.1016/j.theriogenology.2006.02.040
  89. Fonseca JF, Batista RITP, Souza-Fabjan JMG, Oliveira MEF, Brandao FZ, Viana JHM. Freezing goat embryos at different developmental stages and quality using ethylene glycol and a slow cooling rate. Arq Bras Med Vet Zootec 2018;70:1489-96. http://dx.doi.org/10.1590/1678-4162-10196
  90. Stoltzfus M, Wayman J, Stilz R, Bresnahan D. Sex ratio of in vitro-produced goat embryos. Reprod Fertil Dev 2018;31:197. https://doi.org/10.1071/RDv31n1Ab144
  91. Rahman ANMA, Abdullah RB, Khadijah WEW. A review of reproductive biotechnologies and their application in goat. Biotechnology 2008;7:371-84. http://dx.doi.org/10.3923/biotech.2008.371.384
  92. Paramio MT, Izquierdo D. Current status of in vitro embryo production in sheep and goats. Reprod Domest Anim 2014;49:37-48. https://doi.org/10.1111/rda.12334
  93. Paramio MT, Izquierdo D. Recent advance in in vitro embryo production in small ruminants. Theriogenology 2016;86:152-9. https://doi.org/10.1016/j.theriogenology.2016.04.027
  94. Miao XY, Luo QM, Zhao HJ, Qin XY. Genome-wide analysis of miRNAs in the ovaries of Jining Grey and Laiwu Black goats to explore the regulation of fecundity. Sci Rep 2016;6:37983. https://doi.org/10.1038/srep37983
  95. Li H, Zhao Y, Mao J, Guan D. Comparison of placental traits and histological structure among different litter size in Dazu Black goat (Capra Hircus). Reprod Domest Anim 2014;49:80.
  96. Lai FN, Zhai HL, Cheng M, Ma JY, Cheng SF, Ge W. Wholegenome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci Rep 2016;6:38096. https://doi.org/10.1038/srep38096.
  97. Juengel JL, Hudson NL, Heath DA, et al. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod 2002;67:1777-89. https://doi.org/10.1095/biolreprod.102.007146
  98. Hanrahan JP, Gregan SM, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod 2004;70:900-9. https://doi.org/10.1095/biolreprod.103.023093
  99. Chinmoy M, Mangalika R, Mishra S, Sahoo S, Gangadhar N, Patra RC. Genetic polymorphism of prolific genes in goat-a brief review. Explor Anim Med Res 2017;7:132-41.
  100. Dale L, Jones CM. BMP signalling in early Xenopus development. Bioessays 1999;21:751-60. https://doi.org/10.1002/(SICI)1521-1878(199909)21:9%3C751::AID-BIES6%3E3.0.CO;2-I
  101. Malher X, Seegers H, Beaudeau F. Culling and mortality in large dairy goat herds managed under intensive conditions in western France. Livest Prod Sci 2001;71:75-86. https://doi.org/10.1016/S0301-6226(01)00242-1
  102. Holtz W. Recent developments in assisted reproduction in goats. Small Rumin Res 2005;60:95-110. https://doi.org/10.1016/j.smallrumres.2005.06.032
  103. Arredondo AJG, Gomez AG, Vazquez-Armijo JF, Ledezma- Torres RA, Bernal-Barragan H, Sanchez-Davila F. Status and implementation of reproductive technologies in goats in emerging countries. Afr J Biotechnol 2015;14:719-27. http://dx.doi.org/10.5897/AJB2014.14300
  104. Rahman ANMA, Abdullah RB, Khadijah WEW. Estrus synchronization and superovulation in goats: a review. J Biol Sci 2008;8:1129-37. http://dx.doi.org/10.3923/jbs.2008.1129.1137
  105. Pendleton RJ, Youngs CR, Rorie RW, Pool SH, Memon MA, Godke RA. Follicle-stimulating-hormone versus pregnant mare serum gonadotropin for superovulation of dairy goats. Small Rumin Res 1992;8:217-24. https://doi.org/10.1016/0921-4488(92)90042-3
  106. Drion PV, Furtoss V, Baril G, et al. Four years of induction/synchronization of estrus in dairy goats: effect on the evolution of eCG binding rate in relation with the parameters of reproduction. Reprod Nutr Dev 2001;41:401-12. https://doi.org/10.1051/rnd:2001140
  107. Swanson WF, Roth TL, Graham K, Horohov DW, Godke RA. Kinetics of the humoral immune response to multiple treatments with exogenous gonadotropins and relation to ovarian responsiveness in domestic cats. Am J Vet Res 1996;57:302-7.
  108. Combelles CM, Albertini DF. Assessment of oocyte quality following repeated gonadotropin Stimulation in the mouse. Biol Reprod 2003;68:812-21. https://doi.org/10.1095/biolreprod.102.008656
  109. Baril G, Remy B, Vallet JC, Beckers JF. Effect of repeated use of progestagen-PMSG treatment for estrus control in dairy goats out of breeding season. Reprod Domest Anim 1992;27:161-8. https://doi.org/10.1111/j.1439-0531.1992.tb00721.x
  110. Bavister BD, Dees C, Schultz RD. Refractoriness of rhesus monkeys to repeated ovarian stimulation by exogenous gonadotropins is caused by nonprecipitating antibodies. Am J Reprod Immunol Microbiol 1986;11:11-6. https://doi.org/10.1111/j.1600-0897.1986.tb00021.x
  111. Remy B, Baril G, Vallet JC, et al. Are antibodies responsible for a decreased superovulatory response in goats which have been treated repeatedly with porcine follicle-stimulating hormone? Theriogenology 1991;36:389-99. https://doi.org/10.1016/0093-691X(91)90467-R
  112. Haenlein GFW. Goat milk in human nutrition. Small Rumin Res 2004;51:155-63. https://doi.org/10.1016/j.smallrumres.2003.08.010

피인용 문헌

  1. L-OPU in Goat and Sheep—Different Variants of the Oocyte Recovery Method vol.10, pp.4, 2019, https://doi.org/10.3390/ani10040658
  2. A New Concept in Minimally Invasive Embryo Transfer vol.20, pp.4, 2019, https://doi.org/10.2478/aoas-2020-0034
  3. Effect of Simmental bull seminal plasma protein in egg yolk-citrate extender on Kacang buck semen fertility vol.97, 2019, https://doi.org/10.1016/j.cryobiol.2020.10.013
  4. Perspectives for Buck Kids in Dairy Goat Farming vol.8, 2019, https://doi.org/10.3389/fvets.2021.662102
  5. Estrus synchronization and artificial insemination in Korean black goat (Capra hircus coreanae) using frozen-thawed semen vol.63, pp.1, 2019, https://doi.org/10.5187/jast.2021.e10
  6. TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos vol.12, pp.1, 2021, https://doi.org/10.1186/s40104-021-00613-y