DOI QR코드

DOI QR Code

Review of Electrical Characterization of Ceramic Thin Films for the Next Generation Semiconductor Devices

차세대 반도체 소자용 세라믹 박막의 전기적 분석 방법 리뷰

  • Lee, Donghyun (School of Materials Science and Engineering, Pusan National University) ;
  • Yang, Kun (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Ju-Yong (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Min Hyuk (School of Materials Science and Engineering, Pusan National University)
  • 이동현 (부산대학교 재료공학부) ;
  • 양건 (부산대학교 재료공학부) ;
  • 박주용 (부산대학교 재료공학부) ;
  • 박민혁 (부산대학교 재료공학부)
  • Received : 2019.12.07
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

Ceramic thin films are key materials for fundamental electronic devices such as transistors and capacitors which are highly important for the state-of-the-art electronic products. Their characteristic dielectric properties enable accurate control of current conduction through channel of transistors and stored charges in capacitor electrodes. The electronic conduction in ceramic thin films is one of the most important part to understand the electrical properties of electronic device based on ceramic thin films. There have been numerous papers dealing with the electronic conduction mechanisms in emerging ceramic thin films for future electronic devices, but these studies have been rarely reviewed. Another interesting electrical characterization technique is one based on electrical pulses and following transient responses, which can be used to examine physical and chemical changes in ceramic thin films. In this review, studies on various conduction mechanisms through ceramic thin films and electrical characterization based on electric pulses are comprehensively reviewed.

Keywords

References

  1. C. S. Hwang, "Prospective of semiconductor memory devices: from memory system to materials", Adv. Electron. Mater. 1[6], 1400056 (2015). https://doi.org/10.1002/aelm.201400056
  2. S. K. Kim, M. Popovici, "Future of dynamic random-access memory as main memory", MRS Bull. 43[5] 334 (2018). https://doi.org/10.1557/mrs.2018.95
  3. S. W. Lee, J. H. Han, C. S. Hwang, "Electronic Conduction Mechanism of $SrTiO_3$ Thin Film Grown on Ru Electrode by Atomic Layer Deposition", Electrochem. Solid St. 12[11], G69 (2009) https://doi.org/10.1149/1.3212897
  4. Fu-Chien Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Adv. Mater. Sci. Eng. 2014, 578168 (2014)
  5. T. Ikuno, H. Okamoto, Y. Sugiyama, H. Nakano, F. Yamada, and I. Kamiya, "Electron transport properties of Si nanosheets: Transition from direct tunneling to Fowler-Nordheim tunneling", Appl. Phys. Lett. 99[2], 023107 (2011). https://doi.org/10.1063/1.3610486
  6. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang, "Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ thin films", J. Mater. Chem. C 3[24], 6291 (2015). https://doi.org/10.1039/C5TC01074H
  7. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, "Atomic structure of conducting nanofilaments in $TiO_2$ resistive switching memory", Nat. Nanotechnol. 5[2], 148 (2010). https://doi.org/10.1038/nnano.2009.456
  8. K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi, C. S. Hwang, "Anode-interface localized filamentary mechanism in resistive switching of $TiO_2$ thin films", Appl. Phys. Lett. 91[1], 012907 (2007). https://doi.org/10.1063/1.2749846
  9. A. Q. Jiang, H. J. Lee, G. H. Kim, C. S. Hwang, "The Inlaid $Al_2O_3$ Tunnel Switch for Ultrathin Ferroelectric Films", Adv. Mater. 21[28], 2870 (2009). https://doi.org/10.1002/adma.200802924
  10. A. Q. Jiang, H. J. Lee, C. S. Hwang, J. F. Scott, "Sub-Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments", Adv. Funct. Mater. 22[1], 192 (2012). https://doi.org/10.1002/adfm.201101521
  11. A.-Q. Jiang, H. J. Lee, C. S. Hwang, T.-A. Tang, "Resolving the Landauer paradox in ferroelectric switching by high-field charge injection", Phys. Rev. B 80[2], 024119 (2009). https://doi.org/10.1103/physrevb.80.024119
  12. S. Salahuddin, S. Datta, "Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices", Nano Lett. 8[2], 405 (2008). https://doi.org/10.1021/nl071804g
  13. A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, S. Salahuddin, Nat. Mater. 14, 182 (2015). https://doi.org/10.1038/nmat4148
  14. J. Iniguez, P. Zubko, I. Luk'yanchuk, A. Cano, "Ferroelectric negative capacitance", Nat. Rev. Mater. 4, 243 (2019). https://doi.org/10.1038/s41578-019-0089-0
  15. H. W. Park, J. Roh, Y. B. Lee, C. S. Hwang, "Modeling of Negative Capacitance in Ferroelectric Thin Films", Adv. Mater. 31[32], 1805266 (2019). https://doi.org/10.1002/adma.201805266
  16. Y. J. Kim, H. Yamada, T. Moon, Y. J. Kwon, C. H. An, H. J. Kim, K. D. Kim, Y. H. Lee, S. D. Hyun, M. H. Park, C. S. Hwang, "Time-Dependent Negative Capacitance Effects in $Al_2O_3/BaTiO_3$ Bilayers", Nano Lett. 16[7], 4375 (2016). https://doi.org/10.1021/acs.nanolett.6b01480
  17. Y. J. Kim, H. W. Park, S. D. Hyun, H. J. Kim, K. D. Kim, Y. H. Lee, T. Moon, Y. B. Lee, M. H. Park, C. S. Hwang, "Voltage Drop in a Ferroelectric Single Layer Capacitor by Retarded Domain Nucleation", Nano Lett. 17[12], 7796 (2017). https://doi.org/10.1021/acs.nanolett.7b04008
  18. M. Hoffmann, F. P. G. Fengler, M. Herzig, T. Mittmann, B. Max, U. Schroeder, R. Negrea, P. Lucian, S. Slesazeck, T. Mikolajick, "Unveiling the double-well energy landscape in a ferroelectric layer", Nature 565, 464 (2019). https://doi.org/10.1038/s41586-018-0854-z
  19. K . D. Kim, Y. J. Kim, M. H. Park, H. W. Park, Y. J. Kwon, Y. B. Lee, H. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, B. S. Kim, C. S. Hwang, "Transient Negative Capacitance Effect in Atomic-Layer-Deposited $Al_2O_3/Hf_{0.3}Zr_{0.7}O_2$ Bilayer Thin Film", Adv. Funct. Mater. 29[17], 1808228 (2019). https://doi.org/10.1002/adfm.201808228
  20. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, "Ferroelectricity in hafnium oxide thin films", Appl. Phys. Lett. 99[10], 102903 (2011). https://doi.org/10.1063/1.3634052
  21. J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, "Ferroelectricity in simple binary $ZrO_2$ and $HfO_2$", Nano Lett. 12[8], 4318 (2012). https://doi.org/10.1021/nl302049k
  22. M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Mueller, A. Kersch, U. Schroeder, T. Mikolajick, C. S. Hwang, "Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films", Adv. Mater. 27[11], 1811 (2015). https://doi.org/10.1002/adma.201404531
  23. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, "Thin $Hf_xZr1_{2-x}O_2$ Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability", Adv. Energy Mater. 4[16], 1400610 (2014). https://doi.org/10.1002/aenm.201400610
  24. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, "Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric $Hf_xZr_{1-x}O_2$ films", Nano Energy 12, 131 (2015). https://doi.org/10.1016/j.nanoen.2014.09.025
  25. M. H. Park, H. J. Kim, G. Lee, J. Park, Y. H. Lee, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, H. W. Park, H. J. Chang, J.-H. Choi, C. S. Hwang, "A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices", Appl. Phys. Rev. 6[4], 041403 (2019). https://doi.org/10.1063/1.5118737
  26. M. H. Park, C. S. Hwang, "Fluorite-structure antiferroelectrics", Rep. Prog. Phys. 82[12], 124502 (2019). https://doi.org/10.1088/1361-6633/ab49d6
  27. H. J. Kim, M. H. Park, Y. J. Kim, Y. H. Lee, T. Moon, K. D. Kim, S. D. Hyun, C. S. Hwang, "A study on the wake-up effect of ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ films by pulse-switching measurement", Nanoscale 8[3], 1383 (2016). https://doi.org/10.1039/C5NR05339K
  28. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, C. S. Hwang, "Emerging memories: resistive switching mechanisms and current status", Rep. Prog. Phys. 75[7], 076502 (2012). https://doi.org/10.1088/0034-4885/75/7/076502
  29. D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, C. S. Hwang, "Memristors for energy-efficient new computing paradigms", Adv. Electron. Mater. 2[9], 1600090 (2016). https://doi.org/10.1002/aelm.201600090
  30. B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, "Resistive switching mechanism of thin films grown by atomic-layer deposition" J. Appl. Phys. 98[3], 033715 (2005). https://doi.org/10.1063/1.2001146
  31. S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, C. S. Hwang, "Real-time identification of the evolution of conducting nano-filaments in $TiO_2$ thin film ReRAM", Sci. Rep. 3, 3443 (2013). https://doi.org/10.1038/srep03443