DOI QR코드

DOI QR Code

Secondary Ion Mass Spectrometry : Theory and Recent trends

이차이온질량분석기의 원리와 분석법 동향

  • Received : 2019.12.10
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

Secondary Ion Mass Spectrometry(SIMS) is an analytical method that measures the distribution and concentration of elements or compounds by analyzing the mass of secondary ions released by irradiating ion beams with energy of hundreds eV to 20 keV on the sample surface. Unlike other similar analytical instruments, SIMS directly detect the elemental ions that constitute a sample, allowing you to accurately identify components and obtain concentration information in the depth direction. It is also a great feature for measuring isotopes and analyzing light elements, especially hydrogen. In particular, with the development of materials science, there is an increasing demand for trace concentration analysis and isotope measurements in the micro-regions of various materials. SIMS has a short history compared to other similar methods; nevertheless, SIMS is still advancing in hardware and is expected to contribute to the development of materials science through research and development of advanced analytical techniques.

Keywords

References

  1. A. Benninghoven, F.G.Rudenauer, and H.W.Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends, Wiley, New York (1987)
  2. R.G. Wilson, F.A.Stevie, and C.W.Magee, Secondary Ion Mass Spectrometry: A Practical Handbook For Depth Profiling And Bulk Impurity Analysis, Wiley (1989)
  3. John C. Vickerman, Alan Brown, and Nicola M. Reed. "Secondary ion mass spectrometry: principles and applications", Oxford Science Publications (1989)
  4. Vickerman, J.C. and Winograd, N., "SIMS-A precursor and partner to contemporary mass spectrometry" Int. J. Mass Spectrom., 377, [1], 568-579 (2015) https://doi.org/10.1016/j.ijms.2014.06.021
  5. Liebl, H. and Herzog, R.F.K., "Sputtering ion source for solids", Journal of Applied Physics, 34, [9], 2893-2896 (1963) https://doi.org/10.1063/1.1729826
  6. J.A.McHugh, and A.W.Czanderna, "Methods of Surface Analysis", Oxford (1975)
  7. Fred A. Stevie, "Secondary ion mass spectrometry: Applications for Depth Profiling and Surface Characterization", Momentum Press (2016)
  8. Paul van der Heide, "Secondary Ion Mass Spectrometry", Willy (2014)
  9. Alton, G.D., "Characterization of a cesium surface ionization source with a porous tungsten ionizer. I.", Rev. Scientific Instr, 59, [7] 1039-1044 (1988) https://doi.org/10.1063/1.1139776
  10. Coath, C.D., Long, J.V.P., "A high-brigtness duoplasmatron ion source for microprobe secondary-ion mass spectrometry", Rev. Scientific Instr, 66, [2], 1018-1023 (1995) https://doi.org/10.1063/1.1146038
  11. Mahoney, C.M., "Cluster Secondary Ion Mass Spectrometry: Principles and Applications", Wiley (2013)
  12. Mair, G.L.R., "Liquid metal ion sources and their applications". International Journal of Mass Spectrometry and Ion Physics, 114, [1], 1-21 (1992) https://doi.org/10.1016/0168-1176(92)85018-U
  13. 최변각, "이차이온질량분석기의 구조와 원리", 한국기초과학지원연구원 (2019)
  14. Dawson, P.H. "Quadrupoles for secondary ion mass spectrometry", International Journal of Mass Spectrometry and Ion Physics, 17, [4] 447-467 (1975) https://doi.org/10.1016/0020-7381(75)80018-0
  15. J. C. Vickerman, David Briggs, "TOF-SIMS: Materials Analysis by Mass Spectrometry", IM Publications LLP (2013)
  16. Neetu, K. and Bihani, S.G.L., "A review on mass spectrometry detectors". International Research Journal of Pharmacy, 3, [10], 33-42 (2012)
  17. Wittmaack, K., "Primary-ion charge compensation in SIMS analysis of insulators", J. Appl. Phys., 50, [1] 493-497 (1979) https://doi.org/10.1063/1.325640
  18. Migeon, H.N., Schuhmacher, M., Slodizan, G., "Analysis of insulating specimens with the Cameca IMS4f", Surf. Interface Anal. 16, 9-13 (1990) https://doi.org/10.1002/sia.740160105
  19. P D.Briggs, and M.P.Seah, "Practical Surface Analysis", Wiley (1992)
  20. McPhail, D. S. "Applications of secondary ion mass spectrometry (SIMS) in materials science", J. Mater. Sci., 41, [3], 873-903 (2006) https://doi.org/10.1007/s10853-006-6568-x
  21. Tatsumi Ishihara, "Nanomaterials for Advanced Electrode of Low Temperature Solid Oxide Fuel Cells (SOFCs)", J. Kor. Ceram. Soc., 53 [5] 469-477 (2016) https://doi.org/10.4191/kcers.2016.53.5.469
  22. Joon Hyung Shim, Joong Sun Park, Timothy P. Holme, Kevin Crabb, Wonyoung Lee, Young Beom Kim, Xu Tian, Turgut M. Gur, Fritz B. Prinz,"Enhanced Oxygen exchange and incorporation at surface grain boundaries on an oxide ion conductor", Acta Mater., 60 [1] 1-7 (2012) https://doi.org/10.1016/j.actamat.2011.09.050
  23. Shankar Dutta, Akhilesh Pandey, Kajal Jindal, O. P. Thakur, Vinay Gupta, Ratnamala Chatterjee,"Optical properties of Pb $(Zr_{0.52}Ti_{0.48})O_3/BiFeO_3$ multilayers with ZnO buffer layer", Appl. Phys. A, 210 [1] 53-58 (2015)