DOI QR코드

DOI QR Code

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki (Department of Environmental System Engineering, Korea University) ;
  • Oh, Taeseok (BKT Co. Ltd.) ;
  • Jung, Kyungbong (BKT Co. Ltd.) ;
  • Kim, Jaemin (Department of Environmental System Engineering, Korea University) ;
  • Kim, Sungpyo (Department of Environmental System Engineering, Korea University)
  • Received : 2018.10.18
  • Accepted : 2019.03.19
  • Published : 2019.07.25

Abstract

This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.

Keywords

References

  1. APHA, AWWA and WEF (2005), Standard Methods for the Examination of Water and Wastewaster (21st Edition), American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC, USA.
  2. Anthonisen, A.C., Loehr, R.C., Parkasam, T.B.S. and Srinath, E.G. (1976), "Inhibition of nitrification by ammonia and nitrous acid", Wat. Pollut. control Fed, 48(5), 835-852. https://www.jstor.org/stable/25038971.
  3. APHA (2005), Standard Methods for the Examination of Water and Wastewater, (21st Ed.), American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA.
  4. Aslan, S., Miller, L. and Dahab, M. (2009), "Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors", Bioresource Technol., 100(2), 659-664. https://doi.org/10.1016/j.biortech.2008.07.033.
  5. Kartal, B., van Niftrik, L., Keltjens, J.T., Huub, J.M., den Camp, O. and Jetten, M.S.M. (2012), "Anammox-Growth physiology, cell biology and metabolism", Adv. Microbial Physiology, 60, 211-262. https://doi.org/10.1016/B978-0-12-398264-3.00003-6.
  6. Chamchoi, N., Nitisoravut, S. and Schmidt, J.E. (2008), "Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification", Bioresource Technol., 99(9), 3331-3336. https://doi.org/10.1016/j.biortech.2007.08.029.
  7. Cho, S., Fujii, N., Lee, T. and Okabe, S. (2011), "Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor", Bioresour. Technol., 102(2), 652-659. https://doi.org/10.1016/j.biortech.2010.08.031.
  8. De Kreuk, M.K. and De Bruin, L.M.M (2004), Aerobic Granule Reactor Technology, Stowa-Foundation for Applied Water Research, Amersfoort, The Netherlands.
  9. Bettazzi, E., Caffaz, S., Vannini, C. and Lubello, C. (2010), "Nitrite inhibition and intermediates effects on Anammox bacteria: A batch-scale experimental study", Process Biochemistry, 45(4), 573-580. https://doi.org/10.1016/j.procbio.2009.12.003.
  10. Fux, C., Boehler, M., Huber, P., Brunner, I. and Siegrist, H. (2002), "Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant", J. Biotechnol., 99(3), 295-306. https://doi.org/10.1016/S0168-1656(02)00220-1.
  11. Bowden, G., Tsuchihashi, R. and Stensel, H.D. (2015), Technologies for Sidestream Nitrogen Removal, Water Environment Research Foundation(WERF), Virginia, USA.
  12. Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M. and Heijnen, J.J. (1998), "The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water", Water Sci. Technol., 37(9), 135-142. https://doi.org/10.1016/S0273-1223(98)00281-9.
  13. Jetten, M.S.M., Wagner, M., Fuerst, J., Loosdrecht, M.V., Kuenen, J.G. and Strous, M. (2001), "Microbiology and application of the anaerobic ammonium oxidation (Anammox) process", Curr. Opin. Biotechnol., 12(3), 283-288. https://doi.org/10.1016/S0958-1669(00)00211-1.
  14. Lai, E., Senkpiel, S., Solley, D. and Keller, J. (2004), "Nitrogen removal of high strength wastewater via nitritation/denitritation using a sequencing batch reactor", Water Sci. Technol., 50(10), 27-33. https://doi.org/10.2166/wst.2004.0601.
  15. Liang, Z. and Liu, J. (2008), "Landfill leachate treatment with a novel process: anaerobic ammonium oxidation (Anammox) combined with soil infiltration system", J. Hazard. Materials, 151(1), 202-212. https://doi.org/10.1016/j.jhazmat.2007.05.068.
  16. Soliman, M. and Eldyasti, A. (2016), "Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor(SBR) using Ammonium Oxidizing Bacteria(AOB) controlled by mixing regime", Bioresource Technol., 211, 85-95. https://doi.org/10.1016/j.biortech.2016.09.023.
  17. Ali, M. and Okabe, S. (2015), "Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues", Chemosphere, 141, 144-153. https://doi.org/10.1016/j.chemosphere.2015.06.094.
  18. Ibrahim, M., Yusof, M., Z., Yusoff, M and Hassan, M.A. (2016), "Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: A review", Desalination Water Treat., 57, 13958-13978. https://doi.org/10.1080/19443994.2015.1063009.
  19. Okabe, S., Oozawa, Y., Hirata, K. and Watanabe, Y. (1996), "Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios", Water Res., 30, 1563-1572. https://doi.org/10.1016/0043-1354(95)00321-5.
  20. Lorhemen, O.T., Hamza, R.A. and Tay, J.H. (2017), "Utilization of aerobic granulation to mitigate membrane fouling in MBRs", Membr. Water Treat., 8(5), 395-409. http://dx.doi.org/10.12989/mwt.2017.8.5.395.
  21. Jin, R.C., Yang, G.F., Yu, J.J. and Zheng, P. (2012), "The inhibition of the Anammox process: A review", Chemical Eng. J., 197, 67-79. https://doi.org/10.1016/j.cej.2012.05.014.
  22. Ruscalleda, M., Lopez, H., Ganigue, R., Puig, S., Balaguer, M.D. and Colprim, J. (2008), "Heterotrophic denitrification on granular anammox SBR treating urban landfill leachate", Water Sci. Technol., 58(9), 1749-1755. https://doi.org/10.2166/wst.2008.544.
  23. Okabe, S., Oshiki, M., Takahashi, Y. and Satoh, H. (2011), "Development of long-term stable partial nitrification and subsequent anammox process", Bioresource Technol., 102(13), 6801-6807. https://doi.org/10.1016/j.biortech.2011.04.011.
  24. Satoh, H., Okabe, S., Yamaguchi, Y. and Watanabe, Y. (2003), "Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode", Water Research, 37(9), 2206-2216. https://doi.org/10.1016/j.biortech.2011.04.011.
  25. Sliekers, O., Derwort, N., Campos-Gomez, J.L., Strous, M., Kuenen, J.G. and Jetten, M.S.M. (2002), "Completely autotrophic nitrogen removal over nitrite in a single reactor", Water Res., 36, 2475-2482. https://doi.org/10.1016/S0043-1354(01)00476-6.
  26. Lackner, S., Gilber, E.M., Vlaeminck, S.E., Joss, A., Horn, H. and van Loosdrecht, M.C.M. (2014), "Full-scale partial nitritation/anammox experiences-An application survey", Water Res., 55, 292-303. https://doi.org/10.1016/j.watres.2014.02.032.
  27. Third, K.A., Sliekers, A.O., Kuenen, J.G. and Jetten, M.S.M. (2001), "The CANON system (completely autotrophic nitrogenremoval over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria", Syst. Appl. Microbiol., 24(4), 588-596. https://doi.org/10.1078/0723-2020-00077.
  28. van Dongen, U.G.J.M., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2001), "The SHARON-anammox process for treatment of ammonium rich wastewater", Water Sci. Technol., 44, 153-160. https://doi.org/10.2166/wst.2001.0037.
  29. Yamamoto, T., Takaki, K., Koyama, T. and Furukawa, K. (2008), "Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by anammox", Bioresource Technol., 99(14), 6419-6425. https://doi.org/10.1016/j.biortech.2007.11.052.
  30. Yang, S.F., Tay, J.H. and Liu, Y. (2004), "Inhibition of free ammonia to the formation of aerobic granules", Biochem. Eng. J., 17(1), 41-48. https://doi.org/10.1016/S1369-703X(03)00122-0.