DOI QR코드

DOI QR Code

Gait Feature Vectors for Post-stroke Prediction using Wearable Sensor

  • Hong, Seunghee (Center for Medical Convergence Metrology, KRISS) ;
  • Kim, Damee (Center for Medical Convergence Metrology, KRISS) ;
  • Park, Hongkyu (Department of KSB Convergence Research, ETRI) ;
  • Seo, Young (Center for Medical Convergence Metrology, KRISS) ;
  • Hussain, Iqram (Center for Medical Convergence Metrology, KRISS) ;
  • Park, Se Jin (Center for Medical Convergence Metrology, KRISS)
  • Received : 2019.06.19
  • Accepted : 2019.08.21
  • Published : 2019.09.30

Abstract

Stroke is a health problem experienced by many elderly people around the world. Stroke has a devastating effect on quality of life, causing death or disability. Hemiplegia is clearly an early sign of a stroke and can be detected through patterns of body balance and gait. The goal of this study was to determine various feature vectors of foot pressure and gait parameters of patients with stroke through the use of a wearable sensor and to compare the gait parameters with those of healthy elderly people. To monitor the participants at all times, we used a simple measuring device rather than a medical device. We measured gait data of 220 healthy people older than 65 years of age and of 63 elderly patients who had experienced stroke less than 6 months earlier. The center of pressure and the acceleration during standing and gait-related tasks were recorded by a wearable insole sensor worn by the participants. Both the average acceleration and the maximum acceleration were significantly higher in the healthy participants (p < .01) than in the patients with stroke. Thus gait parameters are helpful for determining whether they are patients with stroke or normal elderly people.

Keywords

References

  1. Balasubramanian, L., Ahmed, A., Lo, C. M., Sham, J. S., & Yip, K. P. (2007). Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(4), R1586-94. DOI: 10.1152/ajpcell.00234.2012
  2. Bohannon, R. W. (1986). Strength of lower limb related to gait velocity and cadence in stroke patients. Physiotherapy Canada, 38(4), 204-206. DOI: 10.3138/ptc.38.4.204
  3. Bohannon, R. W. (1987). Gait performance of hemiparetic stroke patients: selected variables. Arch Physical Medicine and Rehabilitation Clinics of North America, 68(11), 777-781.
  4. Bohannon, R. W. (1991). Strength deficits also predict gait performance in patients with stroke. Perceptual and Motor Skills, 73(1), 146. DOI: 10.2466/pms.1991.73.1.146
  5. Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age and Ageing, 26(1), 15-19. DOI: 10.1093/ageing/26.1.15
  6. Bohannon, R. W. (1997). Gait Performance with Wheeled and Standard Walkers. Perceptual and Motor Skills, 85(3_suppl), 1185-1186. Doi:10.2466/pms.1997.85.3f.1185
  7. Brandstater, M. E., de Bruin, H., Gowland, C., & Clark, B. M. (1983). Hemiplegic gait: analysis of temporal variables. Archives of Physical Medicine and Rehabilitation, 64(12), 583-587.
  8. Chen, G., Patten, C., Kothari, D. H., & Zajac, F. E. (2005). Gait differences between individuals with post- stroke. Gait Posture, 22(1), 51-56. DOI: 10.1016/j.gaitpost.2004.06.009
  9. Dettman, M. A., Linder, M. T., & Sepic, S. B. (1987). Relationship among walking performance, postural stability and functional assessments of the hemiplegic patient. American Journal of Physical Medicine and Rehabilitation, 66, 77-90.
  10. Duncan, P. W., Zorowitz, R., Bates, B., Choi, J. Y., Glasberg, J. J., Graham, G. D., Katz, R. C., Lambert, K., & Reker, D. (2015). Management of adult stroke rehabilitation care: a clinical practice guideline. Stroke, 36(9), e100-e143. DOI: 10.1161/01.STR.0000180861.54180.FF
  11. Haart, D. M., Geurts, A. C., Huidekoper, S. C., Fasotti, L., & van Limbeek, J. (2004). Recovery of standing balance in postacute stroke patients: a rehabilitation cohort study. Archives of Physical Medicine and Rehabilitation, 85(6), 886-895. DOI: 10.1161/01.STR.0000180861.54180.FF
  12. Hsu, A. L., Tang, P. F., & Jan, M. H., (2003). Analysis of impairments influencing gait velocity and asymmetry of hemiplegic patients after mild to moderate stroke. Arch Phys Med Rehabil, 84(8), 1185-1193. DOI: 10.1016/s0003-9993(03)00030-3
  13. Institute for Health Metrics and Evaluation (IHME), GBD Compare. Viz Hub (https://vizhub.healthdata.org/gbd-compare/).
  14. Mauritz K. H. (2002). Gait training in hemiplegia. European journal of neurology, 9(s1), 23-29. Doi: 10.1046/j.1468-1331.2002.0090s1023.x
  15. Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M., (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist. AP5. Nature, 27(319), 774-786. DOI: 10.1038/319774a0
  16. Nadeau, S., Arsenault, A. B., Gravel, D., & Bourbonnais, D. (1999). Analysis of the clinical factors determining natural and maximal gait speeds in adults with a stroke. American Journal of Physical Medicine & Rehabilitation, 78(2), 123-130. DOI: 10.1097/00002060-199903000-00007
  17. Nakamura, R., Watanabe, S., Handa, T., & Morohashi, I., (1998). The relationship between walking speed and muscle strength for knee extension in hemiparetic stroke patients: a follow-up study. The Tohoku Journal of Experimental Medicine, 154(2), 111-113. DOI: 10.1620/tjem.154.111
  18. Olney, J. (1969). Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science, 164, 719-721. DOI: 10.1126/science.164.3880.719
  19. Park, S., Subramaniyam, M., Hong, S., & Kim, D. (2017). Service Based Healthcare Monitoring System for the Elderly - Physical Activity and Exercise, Proc. International Conference on Applied Human Factors and Ergonomics, Advances in Human Factors and Ergonomics in Healthcare and Medical Devices, 337-342. Doi: 10.1007/978-3-319-60483-1_34
  20. Patterson, K. K., Gage, W. H., Brooks, D., Black, S. E., & McIlroy, W. E. (2010). Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture, 31(2), 241-246. Doi: 10.1016/j.gaitpost.2009.10.014.
  21. Peter, G. A., & Arthur, D. K. (2016). Mechanisms of Gait Asymmetry Due to Push-off Deficiency in Unilateral Amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(5), 776-785. DOI: 10.1109/TNSRE.2014.2356722
  22. Roth, E. J., Merbitz, C., & Mroczek, K. (1997). Hemiplegic gait. American Journal of Physical Medicine and Rehabilitation, 76, 128-133. DOI: 10.1097/00002060-199703000-00008
  23. Turnbull, G. I., Charteris, J., & Wall, J. C. (1995). A comparison of the range of walking speeds between normal and hemiplegic subjects. Scandinavian Journal of Rehabilitation Medicine Supplement, 27, 175-182.
  24. Wall, J. C., & Turnbull, G. I. (1986). Gait asymmetires in residual hemiplegia. Archives of Physical Medicine and Rehabilitation, 67, 550-553.
  25. Wevers, L., van de Port, I., Vermue, M., Mead, G., & Kwakkel, G. (2009). Effects of task-oriented circuit class training on walking competency after stroke: a systematic review. Stroke, 40(7), 2450-2459. DOI: 10.1161/STROKEAHA.108.541946
  26. Yang, Y. R., Yen, J. G., Wang, R. Y., Yen, L. L., & Lieu, F. K. (2005). Gait outcomes after additional backward walking training in patients with stroke: a randomized controlled trial. Clinical Rehabilitation, 19(3), 264-273. DOI: 10.1191/0269215505cr860oa