DOI QR코드

DOI QR Code

Stress-strain Model of Laterally Confined High-strength Concrete with the Compressive Fracture Energy

압축파괴에너지를 도입한 횡구속 고강도 콘크리트의 응력-변형률 모델

  • Received : 2018.08.03
  • Accepted : 2018.12.18
  • Published : 2019.01.01

Abstract

In this paper, a stress-strain model for high-strength confined concrete is proposed using compressive fracture energy. In the compression test performed by author in Reference [6], an acrylic bar with strain gauges was embedded in the center of the specimen to measure the local strain distribution. It was found from the test that the local strain measurement by this acrylic rod is very effective. The local fracture zone length was defined based on the local strain distribution measured by the acrylic rod. Specifically, it was defined as the length where the local strain increases more than twice of the strain corresponding to maximum stress. In addition, the stress-strain relationship of confined concrete with compressive fracture energy is proposed on the assumption that the amount of energy absorbed by the compressive members subjected to the given lateral confining pressure is constant regardless of the aspect ratio and size. The proposed model predicts even results from other researchers accurately.

본 논문에서는 압축파괴에너지를 이용하여 고강도 구속콘크리트에 대한 응력-변형률 모델을 제안하였다. 참고문헌[5]에서 저자가 실시한 압축실험에는 변형률 게이지를 부착한 아크릴 막대를 실험체의 중앙부에 매립하여 압축부재의 국부 변형률 측정을 시도하였다. 이 아크릴 막대를 이용한 국부 변형률 측정은 매우 효과적인 것으로 나타났다. 압축파괴영역길이는 아크릴 막대로부터 측정된 국부 변형률 분포에 기초하여 정의되었다. 구체적으로, 구속콘크리트의 국소파괴영역길이는 압축강도 발현시의 변형률 ${\varepsilon}_{cc}$의 2배 이상 변형률이 증가하는 영역으로 정의하였다. 또한, 동일한 횡구속압을 받는 압축부재에 흡수된 에너지양은 부재의 형상이나 크기에 관계없이 일정하다는 가정에서 압축 파괴에너지를 도입한 구속콘크리트의 응력-변형률 관계를 제안하였다. 본 연구에서 제안된 모델은 본 연구의 실험결과뿐만 아니라 타 연구자들의 실험결과를 대체적으로 잘 예측하는 것으로 나타났다.

Keywords

References

  1. Baduge, S. K., Mendis, P., Ngo, T., and Portella, J., (2018), Understanding failure and stress-strain behavior of very-high strength concrete(>100MPa) confined by lateral reinforcement, Construction and Building Materials, No. 189, pp. 62-77.
  2. Binici B., (2005), An analytical model for stress-strain behavior of confined concrete, Engineering Structures, No. 27, pp. 1040-1051.
  3. Cusson, D. and Paultre, P., (1994), High-strength concrete columns confined by rectangular ties, Journal of Structural Engineering, ASCE, Vol. 120, No. 3, pp. 783-804. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:3(783)
  4. Cusson, D. and Paulte, P., (1995), Stress-Strain model for confined high-stregnth concrete, Journal of Structural Engineering, ASCE, Vol. 121, No. 3, pp. 468-466. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
  5. Fafitis, A. and Shah, S. P., (1985), Lateral reinforcement for high-strength concrete columns, SP-87, ACI, Detroit, pp. 213-232.
  6. Hong, K. N., Akiyama, M., Yi, S. T., and Suzuki, M., (2006), Stress-Strain behavior of high-strength concrete columns confined by low-volumetric ratio rectangular ties, Magazine of Concrete Research, Vol. 58, No. 2, pp. 101-115. https://doi.org/10.1680/macr.2006.58.2.101
  7. Li, B., Park, R. and Tanaka, H., (2001), Stress-strain behavior of high-strength concrete confined by ultra-high and Normal-strength transverse reinforcement, ACI Structural Journal, Vol. 98, No. 3, pp. 395-406.
  8. Mander. J. B., Priestley, M. J. N. and Park, R., (1988), Theoretical stress-strain model for confined concrete, Journal of Structural Engineering, ASCE, Vol. 114, No. 8, pp. 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
  9. Nagahima, T., Sugano, S., Kimura, H. and Ichikawa, A., (1992), Monotonic axial compression test on ultra-high-strength concrete tied columns, 10th World Conference on Earthquake Engineering, pp. 2983-2988.
  10. Nakamura, H. and Higai, T., (1999), Compressive fracture energy and fracture zone length of concrete, JCI-C51E, Vol. 2, pp. 259-272.
  11. Paultle, P., Legeron, F. and Mongequ, D., (2001), Influence of concrete strength and transverse reinforcement yield stregnth on behavior of high-strength concrete columns, ACI Structural Journal, Vol. 98, No. 4, pp. 490-501.
  12. Razvi, S. and Saatcioglu, M., (1999), Confinement model for high-strength concrete, Journal of Structural Engineering, ASCE, Vol. 125, No. 3, pp. 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  13. Richart, F. E., Brandtzaeg, A. and Brown, R. L., (1928), A study of the failure of concrete under combined compressive stress, University of Illinois Bulletin, Vol. 26, No. 12, pp. 7-90.
  14. Saatcioglu, M. and Razvi, S., (1992), Strength and ductility of confined concrete, Journal of Structural Engineering, ASCE, Vol. 118, No. 6, pp. 1590-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)
  15. Saatcioglu, M. and Razvi, S., (1998), High-strength concrete columns with square sections under concentric compression, Journal of Structural Engineering, ASCE, Vol. 124, No. 12, pp. 1438-1447. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1438)
  16. Samani A. K., and Attard, M. M., (2012), A stress-strain model for uniaxial and confined concrete under compression, Engineering Structures, No. 41, pp. 335-349.