DOI QR코드

DOI QR Code

Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner

  • Wijerathne, Tharaka Darshana (Department of Physiology, College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Ji Hyun (Department of Physiology, College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Min Ji (Department of Physiology, College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Chul Young (College of Pharmacy, Hanyang University) ;
  • Chae, Mee Ree (Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine) ;
  • Lee, Sung Won (Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine) ;
  • Lee, Kyu Pil (Department of Physiology, College of Veterinary Medicine, Chungnam National University)
  • Received : 2019.07.03
  • Accepted : 2019.08.02
  • Published : 2019.09.01

Abstract

Sperm function and male fertility are closely related to pH dependent $K^+$ current (KSper) in human sperm, which is most likely composed of Slo3 and its auxiliary subunit leucine-rich repeat-containing protein 52 (LRRC52). Onion peel extract (OPE) and its major active ingredient quercetin are widely used as fertility enhancers; however, the effect of OPE and quercetin on Slo3 has not been elucidated. The purpose of this study is to investigate the effect of quercetin on human Slo3 channels. Human Slo3 and LRRC52 were co-transfected into HEK293 cells and pharmacological properties were studied with the whole cell patch clamp technique. We successfully expressed and measured pH sensitive and calcium insensitive Slo3 currents in HEK293 cells. We found that OPE and its key ingredient quercetin inhibit Slo3 currents. Inhibition by quercetin is dose dependent and this degree of inhibition decreases with elevating internal alkalization and internal free calcium concentrations. Functional moieties in the quercetin polyphenolic ring govern the degree of inhibition of Slo3 by quercetin, and the composition of such functional moieties are sensitive to the pH of the medium. These results suggest that quercetin inhibits Slo3 in a pH and calcium dependent manner. Therefore, we surmise that quercetin induced depolarization in spermatozoa may enhance the voltage gated proton channel (Hv1), and activate non-selective cation channels of sperm (CatSper) dependent calcium influx to trigger sperm capacitation and acrosome reaction.

Keywords

References

  1. Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell. 2010;140:327-337. https://doi.org/10.1016/j.cell.2009.12.053
  2. Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim Biophys Acta. 2000;1469:197-235. https://doi.org/10.1016/S0304-4157(00)00018-6
  3. Baldi E, Casano R, Falsetti C, Krausz C, Maggi M, Forti G. Intracellular calcium accumulation and responsiveness to progesterone in capacitating human spermatozoa. J Androl. 1991;12:323-330.
  4. Kirichok Y, Lishko PV. Rediscovering sperm ion channels with the patch-clamp technique. Mol Hum Reprod. 2011;17:478-499. https://doi.org/10.1093/molehr/gar044
  5. Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol. 2012;74:453-475. https://doi.org/10.1146/annurev-physiol-020911-153258
  6. Publicover S, Harper CV, Barratt C. $[Ca^{2+}]_i$ signalling in sperm--making the most of what you've got. Nat Cell Biol. 2007;9:235-242. https://doi.org/10.1038/ncb0307-235
  7. Jin M, Fujiwara E, Kakiuchi Y, Okabe M, Satouh Y, Baba SA, Chiba K, Hirohashi N. Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A. 2011;108:4892-4896. https://doi.org/10.1073/pnas.1018202108
  8. Lishko PV, Miller MR, Mansell SA. The role of sperm Ion channels in reproduction. Ion Channels in Health and Disease, Elsevier; 2016. p.223-238.
  9. Miller MR, Mansell SA, Meyers SA, Lishko PV. Flagellar ion chan nels of sperm: similarities and differences between species. Cell Calcium. 2015;58:105-113. https://doi.org/10.1016/j.ceca.2014.10.009
  10. Navarro B, Kirichok Y, Clapham DE. KSper, a pH-sensitive $K^{+}$ current that controls sperm membrane potential. Proc Natl Acad Sci U S A. 2007;104:7688-7692. https://doi.org/10.1073/pnas.0702018104
  11. Zeng XH, Yang C, Kim ST, Lingle CJ, Xia XM. Deletion of the Slo3 gene abolishes alkalization-activated $K^{+}$ current in mouse spermatozoa. Proc Natl Acad Sci U S A. 2011;108:5879-5884. https://doi.org/10.1073/pnas.1100240108
  12. Mannowetz N, Naidoo NM, Choo SA, Smith JF, Lishko PV. Slo1 is the principal potassium channel of human spermatozoa. Elife. 2013;2:e01009. https://doi.org/10.7554/eLife.01009
  13. Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L. The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett. 2010;584:1041-1046. https://doi.org/10.1016/j.febslet.2010.02.005
  14. Zeng XH, Yang C, Xia XM, Liu M, Lingle CJ. SLO3 auxiliary subunit LRRC52 controls gating of sperm KSPER currents and is critical for normal fertility. Proc Natl Acad Sci U S A. 2015;112:2599-2604. https://doi.org/10.1073/pnas.1423869112
  15. Brenker C, Zhou Y, Muller A, Echeverry FA, Trotschel C, Poetsch A, Xia XM, Bonigk W, Lingle CJ, Kaupp UB, Strunker T. The $Ca^{2+}$-activated $K^{+}$ current of human sperm is mediated by Slo3. Elife. 2014;3:e01438. https://doi.org/10.7554/eLife.01438
  16. Chavez JC, Ferreira JJ, Butler A, De La Vega Beltran JL, Trevino CL, Darszon A, Salkoff L, Santi CM. SLO3 $K^{+}$ channels control calcium entry through CATSPER channels in sperm. J Biol Chem. 2014;289:32266-32275. https://doi.org/10.1074/jbc.M114.607556
  17. Abi Nahed R, Martinez G, Hograindleur JP, Le Blevec E, Camugli S, Le Boucher R, Ray PF, Escoffier J, Schmitt E, Arnoult C. Slo3 $K^{+}$ channel blocker clofilium extends bull and mouse sperm-fertilizing competence. Reproduction. 2018;156:463-476. https://doi.org/10.1530/REP-18-0075
  18. Shafiq S, Shakir M, Ali Q. Role of onion in the fertility issues: a review. Academ Arena. 2017;9:40-43.
  19. Musavi H, Tabnak M, Alaei Sheini F, Hasanzadeh Bezvan M, Amidi F, Abbasi M. Effect of garlic (Allium sativum) on male fertility: a systematic review. J Herbmed Pharmacol. 2018;7:306-312. https://doi.org/10.15171/jhp.2018.46
  20. Lanzotti V. The analysis of onion and garlic. J Chromatogr A. 2006;1112:3-22. https://doi.org/10.1016/j.chroma.2005.12.016
  21. Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY, Lee SW. Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology. 2017;5:979-989. https://doi.org/10.1111/andr.12406
  22. Seifi-Jamadi A, Kohram H, Shahneh AZ, Ansari M, Macias-Garcia B. Quercetin ameliorate motility in frozen-thawed Turkmen stallions sperm. J Equine Vet Sci. 2016;45:73-77. https://doi.org/10.1016/j.jevs.2016.06.078
  23. Al-Roujayee A. Improvement of sexual behavior, sperm quantity and quality by Quercetin in streptozotocin-induced diabetic erectile dysfunction. Asian Pac J Reprod. 2017;6:6-12. https://doi.org/10.12980/apjr.6.20170102
  24. Yoshimoto H, Takeo T, Nakagata N. Dimethyl sulfoxide and quercetin prolong the survival, motility, and fertility of cold-stored mouse sperm for 10 days. Biol Reprod. 2017;97:883-891. https://doi.org/10.1093/biolre/iox144
  25. Moretti E, Mazzi L, Terzuoli G, Bonechi C, Iacoponi F, Martini S, Rossi C, Collodel G. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reprod Toxicol. 2012;34:651-657. https://doi.org/10.1016/j.reprotox.2012.10.002
  26. Taepongsorat L, Tangpraprutgul P, Kitana N, Malaivijitnond S. Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats. Asian J Androl. 2008;10:249-258. https://doi.org/10.1111/j.1745-7262.2008.00306.x
  27. Silva LFMC, Araujo EAB, Oliveira SN, Dalanezi FM, Junior LRPA, Carneiro JAM, Rodriguesa LT, Hayashi RM, Crespilho AM, Dell'Aqua CPF, Dell'Aqua Junior JA, Papaa FO. Quercetin promotes increase in the fertility rate of frozen semen of Stallions considered sensitive to freezing. J Equine Vet Sci. 2018;66:82. https://doi.org/10.1016/j.jevs.2018.05.049
  28. Ardeshirnia R, Zandi M, Sanjabi MR. The effect of quercetin on fertility of frozen-thawed ram epididymal spermatozoa. South Afr J Anim Sci. 2017;47:237-244. https://doi.org/10.4314/sajas.v47i2.16
  29. Beazley KE, Nurminskaya M. Effects of dietary quercetin on female fertility in mice: implication of transglutaminase 2. Reprod Fertil Dev. 2016;28:974-981. https://doi.org/10.1071/RD14155
  30. Liang X, Xia Z, Yan J, Wang Y, Xue S, Zhang X. Quercetin inhibits human sperm functions by reducing sperm $[Ca^{2+}]_i$ and tyrosine phosphorylation. Pak J Pharm Sci. 2016;29(6 Suppl):2391-2396.
  31. Wu SN, Chen BS, Hsu CL, Hsu TI. The large-conductance $Ca^{2+}$-activated $K^{+}$ channels: a target for the modulators of estrogen receptors. Curr Top Biochem Res. 2008;10:93-101.
  32. Li PG, Sun L, Han X, Ling S, Gan WT, Xu JW. Quercetin induces rapid eNOS phosphorylation and vasodilation by an Akt-independent and PKA-dependent mechanism. Pharmacology. 2012;89:220-228. https://doi.org/10.1159/000337182
  33. Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H. Effects of luteolin, quercetin and baicalein on immunoglobulin Emediated mediator release from human cultured mast cells. Clin Exp Allergy. 2000;30:501-508. https://doi.org/10.1046/j.1365-2222.2000.00768.x
  34. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell. 2000;6:909-919. https://doi.org/10.1016/S1097-2765(05)00089-4
  35. Lindahl M, Tagesson C. Selective inhibition of group II phospholipase A2 by quercetin. Inflammation. 1993;17:573-582. https://doi.org/10.1007/BF00914195
  36. Wijerathne TD, Kim J, Yang D, Lee KP. Intracellular calciumdependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175. Korean J Physiol Pharmacol. 2017;21:241-249. https://doi.org/10.4196/kjpp.2017.21.2.241
  37. Patton C. MaxChelator [Internet]. 2014. Available from: https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/CaEGTA-NIST.htm
  38. Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, Hoyer D, Insel PA, Izzo AA, Ji Y, MacEwan DJ, Sobey CG, Stanford SC, Teixeira MM, Wonnacott S, Ahluwalia A. Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol. 2018;175:987-993. https://doi.org/10.1111/bph.14153
  39. Leonetti MD, Yuan P, Hsiung Y, Mackinnon R. Functional and structural analysis of the human SLO3 pH- and voltage-gated $K^{+}$ channel. Proc Natl Acad Sci U S A. 2012;109:19274-19279. https://doi.org/10.1073/pnas.1215078109
  40. Jurasekova Z, Domingo C, Garcia-Ramos JV, Sanchez-Cortes S. Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Phys Chem Chem Phys. 2014;16:12802-12811. https://doi.org/10.1039/C4CP00864B
  41. Tsujimoto M, Horie M, Honda H, Takara K, Nishiguchi K. The structure-activity correlation on the inhibitory effects of flavonoids on cytochrome P450 3A activity. Biol Pharm Bull. 2009;32:671-676. https://doi.org/10.1248/bpb.32.671
  42. Matter WF, Brown RF, Vlahos CJ. The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochem Biophys Res Commun. 1992;186:624-631. https://doi.org/10.1016/0006-291X(92)90792-J
  43. Wrighton DC, Muench SP, Lippiat JD. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium. Br J Pharmacol. 2015;172:4355-4363. https://doi.org/10.1111/bph.13214
  44. Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci U S A. 2007;104:1219-1223. https://doi.org/10.1073/pnas.0610286104
  45. Mizuno K, Padma P, Konno A, Satouh Y, Ogawa K, Inaba K. A novel neuronal calcium sensor family protein, calaxin, is a potential $Ca^{2+}$-dependent regulator for the outer arm dynein of metazoan cilia and flagella. Biol Cell. 2009;101:91-103. https://doi.org/10.1042/BC20080032
  46. Shiba K, Baba SA, Inoue T, Yoshida M. $Ca^{2+}$ bursts occur around a local minimal concentration of attractant and trigger sperm chemotactic response. Proc Natl Acad Sci U S A. 2008;105:19312-19317. https://doi.org/10.1073/pnas.0808580105
  47. Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, Gray AJG, Bruce L, Alexander SPH, Anderton S, Bryant C, Davenport AP, Doerig C, Fabbro D, Levi-Schaffer F, Spedding M, Davies JA. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res. 2018;46(D1):D1091-D1106. https://doi.org/10.1093/nar/gkx1121
  48. Chebotarev AN, Snigur DV. Study of the acid-base properties of quercetin in aqueous solutions by color measurements. J Anal Chem. 2015;70:55-59. https://doi.org/10.1134/S1061934815010062
  49. Makler A, David R, Blumenfeld Z, Better OS. Factors affecting sperm motility. VII. Sperm viability as affected by change of pH and osmolarity of semen and urine specimens. Fertil Steril. 1981;36:507-511. https://doi.org/10.1016/S0015-0282(16)45802-4
  50. Ng KYB, Mingels R, Morgan H, Macklon N, Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum Reprod Update. 2017;24:15-34.
  51. Galantino-Homer HL, Florman HM, Storey BT, Dobrinski I, Kopf GS. Bovine sperm capacitation: assessment of phosphodiesterase activity and intracellular alkalinization on capacitation-associated protein tyrosine phosphorylation. Mol Reprod Dev. 2004;67:487-500. https://doi.org/10.1002/mrd.20034
  52. Zeng Y, Oberdorf JA, Florman HM. pH regulation in mouse sperm: identification of $Na^{+}$-, $Cl^{-}$-, and $HCO3^{-}$--dependent and arylaminobenzoate-dependent regulatory mechanisms and characterization of their roles in sperm capacitation. Dev Biol. 1996;173:510-520. https://doi.org/10.1006/dbio.1996.0044
  53. Khaki A, Fathiazad F, Nouri M, Khaki A, Maleki NA, Khamnei HJ, Ahmadi P. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytother Res. 2010;24:1285-1291. https://doi.org/10.1002/ptr.3100
  54. Azadi L, Tavalaee M, Deemeh MR, Arbabian M, Nasr-Esfahani MH. Effects of tempol and Quercetin on human sperm function after cryopreservation. Cryo Letters. 2017;38:29-36.
  55. Winn E, Whitaker BD. Quercetin supplementation during boar semen thawing and incubation improves sperm characteristics [abstract]. J Anim Sci. 2018;96 Suppl 2:261-262. Abstract no. 489. https://doi.org/10.1093/jas/sky073.486