DOI QR코드

DOI QR Code

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method

3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정

  • Yeom, Seong Il (Dept. of Civil and Environmental Engineering, Incheon National University) ;
  • Park, Sung Won (Dept. of Civil and Environmental Engineering, Incheon National University) ;
  • Ahn, Jungkyu (Dept. of Civil and Environmental Engineering, Incheon National University)
  • 염성일 (인천대학교 건설환경공학부) ;
  • 박성원 (인천대학교 건설환경공학부) ;
  • 안정규 (인천대학교 건설환경공학부)
  • Received : 2019.05.30
  • Accepted : 2019.08.02
  • Published : 2019.08.31

Abstract

The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

최근 도시화로 인한 불투수면의 증가는 지표 유출수를 집수하여 배수하는 기존의 배수시스템의 부담을 증가시킨다. 이러한 방식의 우수배수시스템은 표면유출수와 함께 이송되는 각종 쓰레기, 낙엽, 등의 부유물질에 의해 배수면적이 감소하는 구조적 한계를 가지고 있다. 이러한 한계를 극복하기 위해 최근 새로운 형태의 배수시스템이 개발 및 적용되고 있다. 본 연구는 3차원 전산 유체역학 프로그램 중 하나인 ANSYS CFX를 이용하여 투수성 포장 하부에 위치한 배수층의 체적 공극과 투수도 결정을 위한 모의를 각각 수행하였다. 모의결과 35% 체적공극을 가진 배수층의 배수구 유속이 20%, 50%에 해당하는 배수층보다 큰 값을 보여 체적공극과 배수성능 사이의 상관관계는 없는 것으로 파악되었다. 투수도는 구성물질의 입경에 따라 결정되며, 5가지 조건을 모의하여 배수구 유속을 분석한 결과 입경 2 mm의 사질토가 사용성과 시공성 측면에서 가장 적절하다고 분석되었다. 본 연구는 배수층의 적절한 체적 공극과 구성물질의 입경을 제시하였고 이러한 조건을 갖는 배수층이 침수피해를 저감 및 방지의 측면에서 유리할 것으로 판단된다.

Keywords

References

  1. Y. W. Kim, Y. I. Kim, C. H. Kim, Y J. Gong. H. Lee, J. S. Yang, "Evaluation of Rain-water Collection Volume in Rain-water Collecting System for LID", Proceedings of 20th KSCE 2017 convention, Korean Society of Civil Engineers, Busan, South Korea, pp. 153-154, Oct. 2017. URL: http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE07297126
  2. J. H. Im, J. W. Song, S. S. Park, H. S. Park, "An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments", Journal of the Korean Geo-Environmental Society, Vol. 8, No. 5, pp. 47-55, Oct. 2007. UCI: G704-SER000001652.2007.8.5.001
  3. J. H. Im, J. W, Song, Y. J. Park, "Experimental Study on improvement of the Effect for Runoff Reducing Facilities Using Infiltration", Journal of the Korean Geo-Environmental Society, Vol. 10, No. 4, pp. 5-13, May 2009. UCI: G704-SER000001652.2009.10.4.007
  4. B. J. Jang, W. K. Yeo, "Field study on Effects of Runoff Reduction in the infiltration Collector well", Journal of Korea Water Resources Association, Vol. 35, No. 5, pp. 661-618, Oct. 2002. DOI: https://doi.org/10.3741/JKWRA.2002.35.5.611
  5. I. K. Yoo, S. H. Lee, D. S. Han, S. H. Lee, "Worries and Reality Regarding Porous Asphalt Pavements: Structural Integrity, Flood Mitigation and Non-Point Pollution Reduction", Ecology and Resilient Infrastructure, Vol. 3, No. 4, pp. 272-278, December 2016. DOI: https://doi.org/10.17820/eri.2016.3.4.272
  6. G. W. Choi, J. Y. Choi, S. B. Kim, "Development of the Sub-soil Storage System for Utilization Urban Instream Flow of Rainfall Runoff', Journal of Korea Water Resources Association, Vol. 17, No. 4, Aug. 2015. DOI : http://dx.doi.org/10.3741/JKWRA.2004.37.2.163
  7. Y. M. Koo, J. A. Jo, Y. D. Kim, J. H. Park, "A Study on Runoff Analysis of Urban Watershed by Hydrologic Infiltration Experiment of Permeable Pavement", Journal of The Korean Society of Civil Engineers, Vol. 33, No. 2, pp. 559-571, March. 2013. DOI: http://dx.doi.org/10.12652/Ksce.2013.33.2.559
  8. W. G. Lin, S. W. Ryu, D. G. Park, J. H. Lee, Y. H. Cho, "Performance Evaluation of the Runoff Reduction with Permeable Pavements using the SWMM Model", Journal of Korean Society of Road Engineers, Vol. 17, No. 4, pp. 11-18, Aug. 2015. DOI: http://dx.doi.org/10.7855/IJHE.2015.17.4.011
  9. A. M. Wilson, M. Huettel, S. Kleinc, "Grain size and depositional environment as predictors of permeability in coastal marine sands", Estuarine, Coastal and Shelf Science, Vol.80, Issue 1, pp. 193-199, Oct. 2008. DOI: https://doi.org/10.1016/j.ecss.2008.06.011
  10. B. E. Launder, D. B. Spalding, "The numerical computation of turbulent flows", Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289, March 1974. DOI: https://doi.org/10.1016/0045-7825(74)90029-2
  11. ANSYS Incorporated, ANSYS ICEM CFD User's manual, Oct. 2012. URL: https://www.ansys.com/products/fluids/ansys-cfx
  12. Y. Bernabe, U. Mok, B. Evans, "Permeability-porosity Relationships in Rocks Subjected to Various Evolution Processes", Pure and Applied Geophysics, Vol. 160, pp. 937-960, May 2003. DOI: https://doi.org/10.1007/PL00012574