DOI QR코드

DOI QR Code

급속 알칼리 환경하에서의 비닐에스터/FRP 보강근의 재료성능 저하 특성에 관한 실험적 연구

An Experimental Study on the Degradations of Material Properties of Vinylester/FRP Reinforcing Bars under Accelerated Alkaline Condition

  • 오홍섭 (경남과학기술대학교 토목공학과) ;
  • 김영환 (경남과학기술대학교 토목공학과 대학원) ;
  • 장낙섭 (경남과학기술대학교 토목공학과 대학원)
  • 투고 : 2018.10.26
  • 심사 : 2019.01.15
  • 발행 : 2019.03.01

초록

철근의 대체보강재로서 섬유보강근에 대한 적용연구가 증가하고 있으며, 단기거동에 대한 많은 연구가 진행되어 왔다. 본 연구에서는 동결융해와 알칼리 환경하에서의 바살트와 유리섬유보강근의 미세구조와 인장거동 변화를 실험적으로 평가하였다. 100회까지의 동결융해에서 5% 내외의 강도와 탄성계수 저하가 발생하였다. 20일까지의 초기 미세구조변화의 경우 알칼리용액의 온도가 낮은 경우에는 손상이 거의 발생하지 않았으나, $60^{\circ}C$에서는 20일 경과시에도 수지 용해와 섬유 손상이 관찰되었으며, 수지계면의 섬유분리가 발견되었다. 알칼리 환경에서는 $20^{\circ}C$환경에서 100일까지는 10% 내외의 강도저하 현상이 발생하였으며, 500일 노출시 최대50%의 강도 저하가 발생하는 것으로 관찰되었다. $40^{\circ}C$$60^{\circ}C$ 환경에서는 50일과 100일에서 급격한 강도저하가 관찰되었으며, 바살트섬유보강근의 경우에는 알칼리에서 섬유부풀음에 의한 손상으로 강도저하가 더 크게 나타났다. 따라서 블레이디드된 섬유보강근의 장기성능을 향상시키기 위해서는 내알칼리성 확보를 위한 표면처리가 필요한 것으로 분석되었다.

There is increasingly more research focusing on the application of FRP reinforcing bars as an alternative material for steel reinforcing bars, but most such research look at short term behavior of FRP reinforced structures. In this study, the microscopic analysis and tensile behavior of Basalt and Glass FRP bars under freezing-thawing and alkaline conditions were experimentally evaluated. After 100 cycles of the freezing and thawing, the tensile strength and elastic modulus of FRP bars decreased by about 5%. In the case of microstructure of FRP bars during the initial 20 days, no significant damages of FRP bar sections were found under $20^{\circ}C$ alkaline solution; however, the specimens immersed in $60^{\circ}C$ alkaline solution were found to experience resin dissolution, fiber damage and the separation of the resin-fiber interface. In the alkaline environment, the strength decrease of about 10% occurred in the environment at $20^{\circ}C$ for 100 days, but the tensile strength of FRPs exposed for 500 days decreased by 50%. At temperature of $40^{\circ}C$ and $60^{\circ}C$, an abrupt decrease in the strength was observed at 50 and 100 days. Especially, the tensile strength decrease of Basalt fiber Reinforced Polymer bars showed more severe degradation due to the damage caused by dissolution of resin matrix and fiber swelling in alkaline solution. Therefore, in order to improve the long-term performance of the surface braided FRPr reinforcing bars, surface treatment is required to ensure alkali resistance.

키워드

참고문헌

  1. American Concrete Institute (2003). Guide for the Design and Construction of Concrete Reinforced with FRP Bars, ACI 440.1R-03, Farmington Hills, Michigan, USA.
  2. American Concrete Institute (2012). Guide test methods for fiber-reinforced polymer, ACI 440.3R-12, Farmington Hills, Michigan, USA.
  3. American Concrete Institute (2015). Guide for the design and construction of concrete reinforced with FRP bars, ACI 440.1R-15, Farmington Hills, Michigan, USA.
  4. Ali, A. H., Mohamed, H. M., Benmokrane, B., ElSafty, A., & Chaallal, O. (2019). Durability performance and long-term prediction models of sand-coated basalt FRP bars. Composites Part B: Engineering, 157, 248-258.5. https://doi.org/10.1016/j.compositesb.2018.08.065
  5. ASTM Standard D7205 / D7205M-06 (2011). Standard test method for tensile properties of fiber reinforced polymer matrix composite bars. ASTM D7205 / D7205M-06, ASTM International, West Conshohocken, Philadelphia, Pa 19103.
  6. ASTM Standard D7792M (2015). Standard Practice for Freeze/Thaw Conditioning of Pultruded Fiber Reinforced Polymer (FRP) Composites Used in Structural Designs. ASTM D7792M, ASTM International, West Conshohocken, Philadelphia, Pa 19103.
  7. Benmokrane, B., Wang, P., Ton-That, T. M., Rahman, H., & Robert, J. F. (2002). Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment. Journal of Composites for Construction, 6(3), 143-153. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(143)
  8. Benmokrane, B., Elgabbas, F., Ahmed, E. A., & Cousin, P. (2015a). Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars. Journal of Composites for Construction, 19(6), 04015008. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000564
  9. Benmokrane, B., Ali, A. H., Mohamed, H. M., Robert, M., & ElSafty, A. (2015b). Durability performance and service life of CFCC tendons exposed to elevated temperature and alkaline environment. Journal of Composites for Construction, 20(1), 04015043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000606
  10. Benmokrane, B., Nazair, C., Seynave, X., & Manalo, A. (2017). Comparison between ASTM D7205 and CSA S806 Tensile-Testing Methods for Glass Fiber-Reinforced Polymer Bars. Journal of Composites for Construction, 21(5), 04017038. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000819
  11. Canadian Standards Association (CSA). (2010). "Specification for fibre-reinforced polymers." CAN/CSA-S807, Rexdale, Ontario, Canada.
  12. Canadian Standards Association (CSA). (2012). "Design and construction of building structures with fibre-reinforced polymers." CAN/CSA S806-12, Rexdale, Ontario, Canada.
  13. Chen, Y., Davalos, J. F., Ray, I., & Kim, H. Y. (2007). Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures. Composite Structures, 78(1), 101-111. https://doi.org/10.1016/j.compstruct.2005.08.015
  14. Dai, L., & He, X. (2017). Experimental Study on Tensile Properties of GFRP Bars Embedded in Concrete Beams with Working Cracks. In MATEC Web of Conferences (Vol. 88, p. 02005). EDP Sciences.
  15. Grelle, S. V., & Sneed, L. H. (2013). Review of anchorage systems for externally bonded FRP laminates. International Journal of Concrete Structures and Materials, 7(1), 17-33. https://doi.org/10.1007/s40069-013-0029-0
  16. Kim, M. C., Moon, D. Y., & Kim, S. D. (2014). Prediction of Long-term Residual Inter-laminar Shear Strength of Thermally Damaged GFRP Rebar. Journal of the Korea institute for structural maintenance and inspection, 18(3), 108-115. https://doi.org/10.11112/jksmi.2014.18.3.108
  17. Lu, Z., Xian, G., & Li, H. (2015). Effects of exposure to elevated temperatures and subsequent immersion in water or alkaline solution on the mechanical properties of pultruded BFRP plates. Composites Part B: Engineering, 77, 421-430. https://doi.org/10.1016/j.compositesb.2015.03.066
  18. Oh, H. (2015). An Experimental Verification on the Long-Term Performance of FRP Reinforcing Bars using Mechanical Anchorage System. Journal of Korean Society of Hazard Mitigation, 15(4), 147-154. https://doi.org/10.9798/KOSHAM.2015.15.4.147
  19. Robert, M., Cousin, P., & Benmokrane, B. (2009). Durability of GFRP reinforcing bars embedded in moist concrete. Journal of Composites for Construction, 13(2), 66-73. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(66)
  20. Schmidt, J. W., Bennitz, A., Taljsten, B., Goltermann, P., & Pedersen, H. (2012). Mechanical anchorage of FRP tendons-a literature review. Construction and Building Materials, 32, 110-121. https://doi.org/10.1016/j.conbuildmat.2011.11.049
  21. Wang, J., GangaRao, H., Liang, R., & Liu, W. (2016). Durability and prediction models of fiber-reinforced polymer composites under various environmental conditions: A critical review. Journal of Reinforced Plastics and Composites, 35(3), 179-211. https://doi.org/10.1177/0731684415610920
  22. Wu, G., Wang, X., Wu, Z., Dong, Z., & Xie, Q. (2015). Degradation of basalt FRP bars in alkaline environment. Science and Engineering of Composite Materials, 22(6), 649-657.
  23. You, Y. J., Park, K. T., Seo, D. W., & Hwang, J. H. (2015). Experimental Study on GFRP Reinforcing Bars with Hollow Section. Journal of the Korea institute for structural maintenance and inspection, 19(1), 45-52. https://doi.org/10.11112/jksmi.2015.19.1.045

피인용 문헌

  1. Comparison between Multiple Regression Analysis, Polynomial Regression Analysis, and an Artificial Neural Network for Tensile Strength Prediction of BFRP and GFRP vol.14, pp.17, 2019, https://doi.org/10.3390/ma14174861