DOI QR코드

DOI QR Code

Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists

  • Park, Jong Yung (Department of Pharmacology, Korea University College of Medicine) ;
  • Chae, Suji (Department of Pharmacology, Korea University College of Medicine) ;
  • Kim, Chang Seop (Department of Pharmacology, Korea University College of Medicine) ;
  • Kim, Yoon Jae (Department of Pharmacology, Korea University College of Medicine) ;
  • Yi, Hyun Joo (Department of Pharmacology, Korea University College of Medicine) ;
  • Han, Eunjoo (Department of Pharmacology, Korea University College of Medicine) ;
  • Joo, Youngshin (Department of Pharmacology, Korea University College of Medicine) ;
  • Hong, Surim (Department of Pharmacology, Korea University College of Medicine) ;
  • Yun, Jae Won (Department of Pharmacology, Korea University College of Medicine) ;
  • Kim, Hyojung (Department of Pharmacology, Korea University College of Medicine) ;
  • Shin, Kyung Ho (Department of Pharmacology, Korea University College of Medicine)
  • Received : 2019.06.12
  • Accepted : 2019.08.26
  • Published : 2019.11.01

Abstract

Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying $K^+$ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.

Keywords

References

  1. Lane RM. Antidepressant drug development: Focus on triple monoamine reuptake inhibition. J Psychopharmacol. 2015;29:526-544. https://doi.org/10.1177/0269881114553252
  2. Skolnick P, Krieter P, Tizzano J, Basile A, Popik P, Czobor P, Lippa A. Preclinical and clinical pharmacology of DOV 216,303, a "triple" reuptake inhibitor. CNS Drug Rev. 2006;12:123-134. https://doi.org/10.1111/j.1527-3458.2006.00123.x
  3. Chen Z, Yang J, Tobak A. Designing new treatments for depression and anxiety. IDrugs. 2008;11:189-197.
  4. Witkin JM, Rorick-Kehn LM, Benvenga MJ, Adams BL, Gleason SD, Knitowski KM, Li X, Chaney S, Falcone JF, Smith JW, Foss J, Lloyd K, Catlow JT, McKinzie DL, Svensson KA, Barth VN, Toledo MA, Diaz N, Lafuente C, Jimenez A, et al. Preclinical findings predicting efficacy and side-effect profile of LY2940094, an antagonist of nociceptin receptors. Pharmacol Res Perspect. 2016;4:e00275. https://doi.org/10.1002/prp2.275
  5. Post A, Smart TS, Krikke-Workel J, Dawson GR, Harmer CJ, Browning M, Jackson K, Kakar R, Mohs R, Statnick M, Wafford K, McCarthy A, Barth V, Witkin JM. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology. 2016;41:1803-1812. https://doi.org/10.1038/npp.2015.348
  6. Witkin JM, Wallace TL, Martin WJ. Therapeutic approaches for NOP receptor antagonists in neurobehavioral disorders: clinical studies in major depressive disorder and alcohol use disorder with BTRX-246040 (LY2940094). Handb Exp Pharmacol. 2019;254:399-415. https://doi.org/10.1007/164_2018_186
  7. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994;341:33-38. https://doi.org/10.1016/0014-5793(94)80235-1
  8. Bunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK. Molecular cloning and tissue distribution of a puta tive member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 1994;347:284-288. https://doi.org/10.1016/0014-5793(94)00561-3
  9. Chen Y, Fan Y, Liu J, Mestek A, Tian M, Kozak CA, Yu L. Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett. 1994;347:279-283. https://doi.org/10.1016/0014-5793(94)00560-5
  10. Osinski MA, Pampusch MS, Murtaugh MP, Brown DR. Cloning, expression and functional role of a nociceptin/orphanin FQ receptor in the porcine gastrointestinal tract. Eur J Pharmacol. 1999;365:281-289. https://doi.org/10.1016/S0014-2999(98)00869-3
  11. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour LC, Guillemot JC, Ferrara P, Monsarrat B, Mazarguil H, Vassart G, Parmentier M, Costentin J. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature. 1995;377:532-535. https://doi.org/10.1038/377532a0
  12. Reinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science. 1995;270:792-794. https://doi.org/10.1126/science.270.5237.792
  13. Henderson G, McKnight AT. The orphan opioid receptor and its endogenous ligand--nociceptin/orphanin FQ. Trends Pharmacol Sci. 1997;18:293-300. https://doi.org/10.1016/S0165-6147(97)90645-3
  14. Gintzler AR, Adapa ID, Toll L, Medina VM, Wang L. Modulation of enkephalin release by nociceptin (orphanin FQ). Eur J Pharmacol. 1997;325:29-34. https://doi.org/10.1016/S0014-2999(97)00103-9
  15. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Watson SJ Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol. 1999;406:503-547. https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<503::AID-CNE7>3.0.CO;2-P
  16. Neal CR Jr, Mansour A, Reinscheid R, Nothacker HP, Civelli O, Akil H, Watson SJ Jr. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with $^{125}I-[^{14}Tyr]$-orphanin FQ binding. J Comp Neurol. 1999;412:563-605. https://doi.org/10.1002/(SICI)1096-9861(19991004)412:4<563::AID-CNE2>3.0.CO;2-Z
  17. Mansour A, Fox CA, Akil H, Watson SJ. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995;18:22-29. https://doi.org/10.1016/0166-2236(95)93946-U
  18. New DC, Wong YH. The ORL1 receptor: molecular pharmacology and signalling mechanisms. Neurosignals. 2002;11:197-212. https://doi.org/10.1159/000065432
  19. Donica CL, Awwad HO, Thakker DR, Standifer KM. Cellular mechanisms of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor regulation and heterologous regulation by N/OFQ. Mol Pharmacol. 2013;83:907-918. https://doi.org/10.1124/mol.112.084632
  20. Zhang Z, Xin SM, Wu GX, Zhang WB, Ma L, Pei G. Endogenous delta-opioid and ORL1 receptors couple to phosphorylation and activation of p38 MAPK in NG108-15 cells and this is regulated by protein kinase A and protein kinase C. J Neurochem. 1999;73:1502-1509. https://doi.org/10.1046/j.1471-4159.1999.0731502.x
  21. Knoflach F, Reinscheid RK, Civelli O, Kemp JA. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J Neurosci. 1996;16:6657-6664. https://doi.org/10.1523/JNEUROSCI.16-21-06657.1996
  22. Tallent MK, Madamba SG, Siggins GR. Nociceptin reduces epileptiform events in CA3 hippocampus via presynaptic and postsynaptic mechanisms. J Neurosci. 2001;21:6940-6948. https://doi.org/10.1523/JNEUROSCI.21-17-06940.2001
  23. Levitan IB, Kaczmarek LK. The neuron: cell and molecular biology. 3rd ed. New York: Oxford University Press; 2001.
  24. Chin JH, Harris K, MacTavish D, Jhamandas JH. Nociceptin/orphanin FQ modulation of ionic conductances in rat basal forebrain neurons. J Pharmacol Exp Ther. 2002;303:188-195. https://doi.org/10.1124/jpet.102.037945
  25. Qu L, Li Y, Tian H, Wang Z, Cui L, Jin H, Wang W, Yang L. Effects of PKC on inhibition of delayed rectifier potassium currents by N/OFQ. Biochem Biophys Res Commun. 2007;356:582-586. https://doi.org/10.1016/j.bbrc.2007.03.008
  26. Yao WD, Wu CF. Distinct roles of CaMKII and PKA in regulation of firing patterns and $K^+$ currents in Drosophila neurons. J Neurophysiol. 2001;85:1384-1394. https://doi.org/10.1152/jn.2001.85.4.1384
  27. Vaughan CW, Christie MJ. Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br J Pharmacol. 1996;117:1609-1611. https://doi.org/10.1111/j.1476-5381.1996.tb15329.x
  28. Connor M, Vaughan CW, Chieng B, Christie MJ. Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol. 1996;119:1614-1618. https://doi.org/10.1111/j.1476-5381.1996.tb16080.x
  29. Emmerson PJ, Miller RJ. Pre- and postsynaptic actions of opioid and orphan opioid agonists in the rat arcuate nucleus and ventromedial hypothalamus in vitro. J Physiol. 1999;517(Pt 2):431-445. https://doi.org/10.1111/j.1469-7793.1999.0431t.x
  30. Wagner EJ, Ronnekleiv OK, Grandy DK, Kelly MJ. The peptide orphanin FQ inhibits beta-endorphin neurons and neurosecretory cells in the hypothalamic arcuate nucleus by activating an inwardly-rectifying $K^+$ conductance. Neuroendocrinology. 1998;67:73-82. https://doi.org/10.1159/000054301
  31. Slugg RM, Ronnekleiv OK, Grandy DK, Kelly MJ. Activation of an inwardly rectifying $K^+$ conductance by orphanin-FQ/nociceptin in vasopressin-containing neurons. Neuroendocrinology. 1999;69:385-396. https://doi.org/10.1159/000054441
  32. Chiou LC. $[Phe1psi(CH_2-NH)Gly^2]$nociceptin-(1-13)-$NH_2$ activation of an inward rectifier as a partial agonist of ORL1 receptors in rat periaqueductal gray. Br J Pharmacol. 1999;128:103-107. https://doi.org/10.1038/sj.bjp.0702746
  33. Ikeda K, Kobayashi K, Kobayashi T, Ichikawa T, Kumanishi T, Kishida H, Yano R, Manabe T. Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated $K^+$ (GIRK) channel. Brain Res Mol Brain Res. 1997;45:117-126. https://doi.org/10.1016/S0169-328X(96)00252-5
  34. Meis S, Pape HC. Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to nociceptin/orphanin FQ. J Neurosci. 1998;18:8133-8144. https://doi.org/10.1523/JNEUROSCI.18-20-08133.1998
  35. Farhang B, Pietruszewski L, Lutfy K, Wagner EJ. The role of the NOP receptor in regulating food intake, meal pattern, and the excitability of proopiomelanocortin neurons. Neuropharmacology. 2010;59:190-200. https://doi.org/10.1016/j.neuropharm.2010.05.007
  36. Chee MJ, Price CJ, Statnick MA, Colmers WF. Nociceptin/orphanin FQ suppresses the excitability of neurons in the ventromedial nucleus of the hypothalamus. J Physiol. 2011;589(Pt 13):3103-3114. https://doi.org/10.1113/jphysiol.2011.208819
  37. Borgquist A, Kachani M, Tavitian N, Sinchak K, Wagner EJ. Estradiol negatively modulates the pleiotropic actions of orphanin FQ/nociceptin at proopiomelanocortin synapses. Neuroendocrinology. 2013;98:60-72. https://doi.org/10.1159/000351868
  38. Hernandez J, Fabelo C, Perez L, Moore C, Chang R, Wagner EJ. Nociceptin/orphanin FQ modulates energy homeostasis through inhibition of neurotransmission at VMN SF-1/ARC POMC synapses in a sex- and diet-dependent manner. Biol Sex Differ. 2019;10:9. https://doi.org/10.1186/s13293-019-0220-3
  39. Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, Yamanaka A, Diano S, Horvath TL, Sakurai T, Toll L, Kilduff TS. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest. 2008;118:2471-2481. https://doi.org/10.1172/JCI35115
  40. Meis S, Munsch T, Pape HC. Antioscillatory effects of nociceptin/orphanin FQ in synaptic networks of the rat thalamus. J Neurosci. 2002;22:718-727. https://doi.org/10.1523/JNEUROSCI.22-03-00718.2002
  41. Connor M, Yeo A, Henderson G. The effect of nociceptin on $Ca^{2+}$ channel current and intracellular $Ca^{2+}$ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol. 1996;118:205-207. https://doi.org/10.1111/j.1476-5381.1996.tb15387.x
  42. Vaughan CW, Connor M, Jennings EA, Marinelli S, Allen RG, Christie MJ. Actions of nociceptin/orphanin FQ and other prepronociceptin products on rat rostral ventromedial medulla neurons in vitro. J Physiol. 2001;534(Pt 3):849-859. https://doi.org/10.1111/j.1469-7793.2001.00849.x
  43. Zamponi GW, Snutch TP. Decay of prepulse facilitation of N type calcium channels during G protein inhibition is consistent with binding of a single Gbeta subunit. Proc Natl Acad Sci U S A. 1998;95:4035-4039. https://doi.org/10.1073/pnas.95.7.4035
  44. Pu L, Bao GB, Ma L, Pei G. Acute desensitization of nociceptin/orphanin FQ inhibition of voltage-gated calcium channels in freshly dissociated hippocampal neurons. Eur J Neurosci. 1999;11:3610-3616. https://doi.org/10.1046/j.1460-9568.1999.00776.x
  45. Connor M, Christie MJ. Modulation of $Ca^{2+}$ channel currents of acutely dissociated rat periaqueductal grey neurons. J Physiol. 1998;509(Pt 1):47-58. https://doi.org/10.1111/j.1469-7793.1998.047bo.x
  46. Borgland SL, Connor M, Christie MJ. Nociceptin inhibits calcium channel currents in a subpopulation of small nociceptive trigeminal ganglion neurons in mouse. J Physiol. 2001;536(Pt 1):35-47. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00035.x
  47. Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB, Vartian BA, Chen L, Beedle AM, Ferguson SS, Mezghrani A, Dubel SJ, Bourinet E, McRory JE, Zamponi GW. ORL1 receptor-mediated internalization of N-type calcium channels. Nat Neurosci. 2006;9:31-40. https://doi.org/10.1038/nn1605
  48. Murali SS, Napier IA, Rycroft BK, Christie MJ. Opioid-related (ORL1) receptors are enriched in a subpopulation of sensory neurons and prolonged activation produces no functional loss of surface N-type calcium channels. J Physiol. 2012;590:1655-1667. https://doi.org/10.1113/jphysiol.2012.228429
  49. Spampinato S, Di Toro R, Qasem AR. Nociceptin-induced internalization of the ORL1 receptor in human neuroblastoma cells. Neuroreport. 2001;12:3159-3163. https://doi.org/10.1097/00001756-200110080-00035
  50. Gavioli EC, Vaughan CW, Marzola G, Guerrini R, Mitchell VA, Zucchini S, De Lima TC, Rae GA, Salvadori S, Regoli D, Calo' G. Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn Schmiedebergs Arch Pharmacol. 2004;369:547-553. https://doi.org/10.1007/s00210-004-0939-0
  51. Kawahara Y, Hesselink MB, van Scharrenburg G, Westerink BH. Tonic inhibition by orphanin FQ/nociceptin of noradrenaline neurotransmission in the amygdala. Eur J Pharmacol. 2004;485:197-200. https://doi.org/10.1016/j.ejphar.2003.11.061
  52. Yoshitake S, Ijiri S, Kehr J, Yoshitake T. Concurrent modulation of extracellular levels of noradrenaline and cAMP during stress and by anxiogenic- or anxiolytic-like neuropeptides in the prefrontal cortex of awake rats. Neurochem Int 2013;62:314-323. https://doi.org/10.1016/j.neuint.2012.12.011
  53. Okawa H, Kudo M, Kudo T, Guerrini R, Lambert DG, Kushikata T, Yoshida H, Matsuki A. Effects of $nociceptinNH_2$ and [$Nphe^1$] $nociceptin(1-13)NH_2$ on rat brain noradrenaline release in vivo and in vitro. Neurosci Lett. 2001;303:173-176. https://doi.org/10.1016/S0304-3940(01)01721-9
  54. Siniscalchi A, Rodi D, Morari M, Marti M, Cavallini S, Marino S, Beani L, Bianchi C. Direct and indirect inhibition by nociceptin/orphanin FQ on noradrenaline release from rodent cerebral cortex in vitro. Br J Pharmacol. 2002;136:1178-1184. https://doi.org/10.1038/sj.bjp.0704841
  55. Rominger A1, Forster S, Zentner J, Dooley DJ, McKnight AT, Feuerstein TJ, Jackisch R, Vlaskovska M. Comparison of the ORL1 receptor-mediated inhibition of noradrenaline release in human and rat neocortical slices. Br J Pharmacol. 2002;135:800-806. https://doi.org/10.1038/sj.bjp.0704523
  56. Marti M, Stocchi S, Paganini F, Mela F, De Risi C, Calo' G, Guerrini R, Barnes TA, Lambert DG, Beani L, Bianchi C, Morari M. Pharmacological profiles of presynaptic nociceptin/orphanin FQ receptors modulating 5-hydroxytryptamine and noradrenaline release in the rat neocortex. Br J Pharmacol. 2003;138:91-98. https://doi.org/10.1038/sj.bjp.0705005
  57. Schlicker E, Morari M. Nociceptin/orphanin FQ and neurotransmitter release in the central nervous system. Peptides. 2000;21:1023-1029. https://doi.org/10.1016/S0196-9781(00)00233-3
  58. Schlicker E, Werthwein S, Kathmann M, Bauer U. Nociceptin inhibits noradrenaline release in the mouse brain cortex via presynaptic ORL1 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:418-422. https://doi.org/10.1007/PL00005273
  59. Florin S, Leroux-Nicollet I, Meunier JC, Costentin J. Autoradiographic localization of [$^3H$] nociceptin binding sites from telencephalic to mesencephalic regions of the mouse brain. Neurosci Lett. 1997;230:33-36. https://doi.org/10.1016/S0304-3940(97)00470-9
  60. Norton CS, Neal CR, Kumar S, Akil H, Watson SJ. Nociceptin/orphanin FQ and opioid receptor-like receptor mRNA expression in dopamine systems. J Comp Neurol. 2002;444:358-368. https://doi.org/10.1002/cne.10154
  61. Maidment NT, Chen Y, Tan AM, Murphy NP, Leslie FM. Rat ventral midbrain dopamine neurons express the orphanin FQ/nociceptin receptor ORL-1. Neuroreport. 2002;13:1137-1140. https://doi.org/10.1097/00001756-200207020-00013
  62. Olianas MC, Dedoni S, Boi M, Onali P. Activation of nociceptin/ orphanin FQ-NOP receptor system inhibits tyrosine hydroxylase phosphorylation, dopamine synthesis, and dopamine D1 receptor signaling in rat nucleus accumbens and dorsal striatum. J Neurochem. 2008;107:544-556. https://doi.org/10.1111/j.1471-4159.2008.05629.x
  63. Lutfy K, Do T, Maidment NT. Orphanin FQ/nociceptin attenuates motor stimulation and changes in nucleus accumbens extracellular dopamine induced by cocaine in rats. Psychopharmacology (Berl). 2001;154:1-7. https://doi.org/10.1007/s002130000609
  64. Murphy NP, Maidment NT. Orphanin FQ/nociceptin modulation of mesolimbic dopamine transmission determined by microdialysis. J Neurochem. 1999;73:179-186. https://doi.org/10.1046/j.1471-4159.1999.0730179.x
  65. Koizumi M, Sakoori K, Midorikawa N, Murphy NP. The NOP (ORL1) receptor antagonist Compound B stimulates mesolimbic dopamine release and is rewarding in mice by a non-NOP-receptor- mediated mechanism. Br J Pharmacol. 2004;143:53-62. https://doi.org/10.1038/sj.bjp.0705906
  66. Vazquez-DeRose J, Stauber G, Khroyan TV, Xie XS, Zaveri NT, Toll L. Retrodialysis of N/OFQ into the nucleus accumbens shell blocks cocaine-induced increases in extracellular dopamine and locomotor activity. Eur J Pharmacol. 2013;699:200-206. https://doi.org/10.1016/j.ejphar.2012.11.050
  67. Murphy NP, Tan AM, Lam HA, Maidment NT. Nociceptin/orphanin FQ modulation of rat midbrain dopamine neurons in primary culture. Neuroscience. 2004;127:929-940. https://doi.org/10.1016/j.neuroscience.2004.05.055
  68. Zheng F, Grandy DK, Johnson SW. Actions of orphanin FQ/nociceptin on rat ventral tegmental area neurons in vitro. Br J Pharmacol. 2002;136:1065-1071. https://doi.org/10.1038/sj.bjp.0704806
  69. Sesack SR, Pickel VM. Ultrastructural relationships between terminals immunoreactive for enkephalin, GABA, or both transmitters in the rat ventral tegmental area. Brain Res. 1995;672:261-275. https://doi.org/10.1016/0006-8993(94)01391-T
  70. Kalivas PW, Churchill L, Klitenick MA. GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience. 1993;57:1047-1060. https://doi.org/10.1016/0306-4522(93)90048-K
  71. Sesack SR, Pickel VM. Dual ultrastructural localization of enkephalin and tyrosine hydroxylase immunoreactivity in the rat ventral tegmental area: multiple substrates for opiate-dopamine interactions. J Neurosci. 1992;12:1335-1350. https://doi.org/10.1523/JNEUROSCI.12-04-01335.1992
  72. Starr MS. Multiple opiate receptors may be involved in suppressing gamma-aminobutyrate release in substantia nigra. Life Sci. 1985;37:2249-2255. https://doi.org/10.1016/0024-3205(85)90015-3
  73. Tanaka E, North RA. Opioid actions on rat anterior cingulate cortex neurons in vitro. J Neurosci. 1994;14(3 Pt 1):1106-1113. https://doi.org/10.1523/JNEUROSCI.14-03-01106.1994
  74. Mogil JS, Grisel JE, Zhangs G, Belknap JK, Grandy DK. Functional antagonism of mu-, delta- and kappa-opioid antinociception by orphanin FQ. Neurosci Lett. 1996;214:131-134. https://doi.org/10.1016/0304-3940(96)12917-7
  75. Van Bockstaele EJ, Pickel VM. GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res. 1995;682:215-221. https://doi.org/10.1016/0006-8993(95)00334-M
  76. Anton B, Fein J, To T, Li X, Silberstein L, Evans CJ. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J Comp Neurol. 1996;368:229-251. https://doi.org/10.1002/(SICI)1096-9861(19960429)368:2<229::AID-CNE5>3.0.CO;2-5
  77. Le Maitre E, Vilpoux C, Costentin J, Leroux-Nicollet I. Opioid receptor-like 1 (NOP) receptors in the rat dorsal raphe nucleus: evidence for localization on serotoninergic neurons and functional adaptation after 5,7-dihydroxytryptamine lesion. J Neurosci Res. 2005;81:488-496. https://doi.org/10.1002/jnr.20571
  78. Nazzaro C, Barbieri M, Varani K, Beani L, Valentino RJ, Siniscalchi A. Swim stress enhances nociceptin/orphanin FQ-induced inhibition of rat dorsal raphe nucleus activity in vivo and in vitro: role of corticotropin releasing factor. Neuropharmacology. 2010;58:457-464. https://doi.org/10.1016/j.neuropharm.2009.09.004
  79. Nazzaro C, Marino S, Barbieri M, Siniscalchi A. Inhibition of serotonin outflow by nociceptin/orphaninFQ in dorsal raphe nucleus slices from normal and stressed rats: role of corticotropin releasing factor. Neurochem Int. 2009;54:378-384. https://doi.org/10.1016/j.neuint.2009.01.004
  80. Tao R, Ma Z, Thakkar MM, McCarley RW, Auerbach SB. Nociceptin/orphanin FQ decreases serotonin efflux in the rat brain but in contrast to a kappa-opioid has no antagonistic effect on muopioid-induced increases in serotonin efflux. Neuroscience. 2007;147:106-116. https://doi.org/10.1016/j.neuroscience.2007.02.011
  81. Le Maitre E, Dourmap N, Vilpoux C, Leborgne R, Janin F, Bonnet JJ, Costentin J, Leroux-Nicollet I. Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin. Brain Res. 2013;1520:51-60. https://doi.org/10.1016/j.brainres.2013.05.005
  82. Sbrenna S, Marti M, Morari M, Calo' G, Guerrini R, Beani L, Bianchi C. Modulation of 5-hydroxytryptamine efflux from rat cortical synaptosomes by opioids and nociceptin. Br J Pharmacol. 2000;130:425-433. https://doi.org/10.1038/sj.bjp.0703321
  83. Calo G, Rizzi A, Rizzi D, Bigoni R, Guerrini R, Marzola G, Marti M, McDonald J, Morari M, Lambert DG, Salvadori S, Regoli D. $[Nphe^1,Arg^{14},Lys^{15}]nociceptin-NH_2$, a novel potent and selective antagonist of the nociceptin/orphanin FQ receptor. Br J Pharmacol. 2002;136:303-311. https://doi.org/10.1038/sj.bjp.0704706
  84. Werthwein S, Bauer U, Nakazi M, Kathmann M, Schlicker E. Further characterization of the ORL1 receptor-mediated inhibition of noradrenaline release in the mouse brain in vitro. Br J Pharmacol. 1999;127:300-308. https://doi.org/10.1038/sj.bjp.0702534
  85. Berger B, Rothmaier AK, Wedekind F, Zentner J, Feuerstein TJ, Jackisch R. Presynaptic opioid receptors on noradrenergic and serotonergic neurons in the human as compared to the rat neocortex. Br J Pharmacol. 2006;148:795-806. https://doi.org/10.1038/sj.bjp.0706782
  86. Devine DP, Watson SJ, Akil H. Nociceptin/orphanin FQ regulates neuroendocrine function of the limbic-hypothalamic-pituitaryadrenal axis. Neuroscience. 2001;102:541-553. https://doi.org/10.1016/S0306-4522(00)00517-0
  87. Leggett JD, Harbuz MS, Jessop DS, Fulford AJ. The nociceptin receptor antagonist $[Nphe^1,Arg^{14},Lys^{15}]nociceptin/orphanin FQ-NH_2$ blocks the stimulatory effects of nociceptin/orphanin FQ on the HPA axis in rats. Neuroscience. 2006;141:2051-2057. https://doi.org/10.1016/j.neuroscience.2006.05.036
  88. Nicholson JR, Akil H, Watson SJ. Orphanin FQ-induced hyperphagia is mediated by corticosterone and central glucocorticoid receptors. Neuroscience. 2002;115:637-643. https://doi.org/10.1016/S0306-4522(02)00290-7
  89. Le Cudennec C, Naudin B, Do Rego JC, Costentin J. Nociceptin/orphanin FQ and related peptides reduce the increase in plasma corticosterone elicited in mice by an intracerebroventricular injection. Life Sci. 2002;72:163-171. https://doi.org/10.1016/S0024-3205(02)02218-X
  90. Fernandez F, Misilmeri MA, Felger JC, Devine DP. Nociceptin/orphanin FQ increases anxiety-related behavior and circulating levels of corticosterone during neophobic tests of anxiety. Neuropsychopharmacology. 2004;29:59-71. https://doi.org/10.1038/sj.npp.1300308
  91. Green MK, Barbieri EV, Brown BD, Chen KW, Devine DP. Roles of the bed nucleus of stria terminalis and of the amygdala in N/ OFQ-mediated anxiety and HPA axis activation. Neuropeptides. 2007;41:399-410. https://doi.org/10.1016/j.npep.2007.09.002
  92. Gottlieb HB, Fleming TM, Ji L, Cunningham JT. Identification of central nervous system sites involved in the water diuresis response elicited by central microinjection of nociceptin/Orphanin FQ in conscious rats via c-Fos and inducible cAMP early repressor immunocytochemistry. J Neuroendocrinol. 2007;19:531-542. https://doi.org/10.1111/j.1365-2826.2007.01559.x
  93. Kazi JA. Nocistatin and nociceptin modulate c-Fos expression in the mice thalamus. Neurol Sci. 2012;33:1233-1237. https://doi.org/10.1007/s10072-012-0933-0
  94. Olszewski PK, Billington CJ, Levine AS. Fos expression in feedingrelated brain areas following intracerebroventricular administration of orphanin FQ in rats. Brain Res. 2000;855:171-175. https://doi.org/10.1016/S0006-8993(99)02239-8
  95. Leggett JD, Dawe KL, Jessop DS, Fulford AJ. Endogenous nociceptin/orphanin FQ system involvement in hypothalamicpituitary-adrenal axis responses: relevance to models of inflammation. J Neuroendocrinol. 2009;21:888-897. https://doi.org/10.1111/j.1365-2826.2009.01912.x
  96. Kawashima N, Fugate J, Kusnecov AW. Immunological challenge modulates brain orphanin FQ/nociceptin and nociceptive behavior. Brain Res. 2002;949:71-78. https://doi.org/10.1016/S0006-8993(02)02966-9
  97. Nativio P, Pascale E, Maffei A, Scaccianoce S, Passarelli F. Effect of stress on hippocampal nociceptin expression in the rat. Stress. 2012;15:378-384. https://doi.org/10.3109/10253890.2011.627071
  98. Delaney G, Dawe KL, Hogan R, Hunjan T, Roper J, Hazell G, Lolait SJ, Fulford AJ. Role of nociceptin/orphanin FQ and NOP receptors in the response to acute and repeated restraint stress in rats. J Neuroendocrinol. 2012;24:1527-1541. https://doi.org/10.1111/j.1365-2826.2012.02361.x
  99. Green MK, Devine DP. Nociceptin/orphanin FQ and NOP receptor gene regulation after acute or repeated social defeat stress. Neuropeptides. 2009;43:507-514. https://doi.org/10.1016/j.npep.2009.08.003
  100. Martinez M, Phillips PJ, Herbert J. Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats. Eur J Neurosci. 1998;10:20-33. https://doi.org/10.1046/j.1460-9568.1998.00011.x
  101. Pan YX, Xu J, Pasternak GW. Structure and characterization of the gene encoding a mouse kappa3-related opioid receptor. Gene. 1996;171:255-260. https://doi.org/10.1016/0378-1119(95)00890-X
  102. Xie GX, Ito E, Maruyama K, Suzuki Y, Sugano S, Sharma M, Pietruck C, Palmer PP. The promoter region of human prepronociceptin gene and its regulation by cyclic AMP and steroid hormones. Gene. 1999;238:427-436. https://doi.org/10.1016/S0378-1119(99)00350-9
  103. Granholm L, Roman E, Nylander I. Single housing during early adolescence causes time-, area- and peptide-specific alterations in endogenous opioids of rat brain. Br J Pharmacol. 2015;172:606-614. https://doi.org/10.1111/bph.12753
  104. Tolchard S, Hare AS, Nutt DJ, Clarke G. TNF alpha mimics the endocrine but not the thermoregulatory responses of bacterial lipopolysaccharide (LPS): correlation with FOS-expression in the brain. Neuropharmacology. 1996;35:243-248. https://doi.org/10.1016/0028-3908(96)00002-0
  105. Devine DP, Hoversten MT, Ueda Y, Akil H. Nociceptin/orphanin FQ content is decreased in forebrain neurones during acute stress. J Neuroendocrinol. 2003;15:69-74. https://doi.org/10.1046/j.1365-2826.2003.00868.x
  106. Ploj K, Roman E, Nylander I. Effects of maternal separation on brain nociceptin/orphanin FQ peptide levels in male Wistar rats. Pharmacol Biochem Behav. 2002;73:123-129. https://doi.org/10.1016/S0091-3057(02)00778-5
  107. Reiss D, Wolter-Sutter A, Krezel W, Ouagazzal AM. Effects of social crowding on emotionality and expression of hippocampal nociceptin/orphanin FQ system transcripts in mice. Behav Brain Res. 2007;184:167-173. https://doi.org/10.1016/j.bbr.2007.07.010
  108. Alder J, Kallman S, Palmieri A, Khadim F, Ayer JJ, Kumar S, Tsung K, Grinberg I, Thakker-Varia S. Neuropeptide orphanin FQ inhibits dendritic morphogenesis through activation of RhoA. Dev Neurobiol. 2013;73:769-784. https://doi.org/10.1002/dneu.22101
  109. Ring RH, Alder J, Fennell M, Kouranova E, Black IB, Thakker-Varia S. Transcriptional profiling of brain-derived-neurotrophic factor-induced neuronal plasticity: a novel role for nociceptin in hippocampal neurite outgrowth. J Neurobiol. 2006;66:361-377. https://doi.org/10.1002/neu.20223
  110. Gavioli EC, Marzola G, Guerrini R, Bertorelli R, Zucchini S, De Lima TC, Rae GA, Salvadori S, Regoli D, Calo G. Blockade of nociceptin/orphanin FQ-NOP receptor signalling produces antidepressant-like effects: pharmacological and genetic evidences from the mouse forced swimming test. Eur J Neurosci. 2003;17:1987-1990. https://doi.org/10.1046/j.1460-9568.2003.02603.x
  111. Redrobe JP, Calo' G, Regoli D, Quirion R. Nociceptin receptor antagonists display antidepressant-like properties in the mouse forced swimming test. Naunyn Schmiedebergs Arch Pharmacol. 2002;365:164-167. https://doi.org/10.1007/s00210-001-0511-0
  112. Holanda VAD, Santos WB, Asth L, Guerrini R, Calo' G, Ruzza C, Gavioli EC. NOP agonists prevent the antidepressant-like effects of nortriptyline and fluoxetine but not R-ketamine. Psychopharmacology (Berl). 2018;235:3093-3102. https://doi.org/10.1007/s00213-018-5004-7
  113. Rizzi A, Gavioli EC, Marzola G, Spagnolo B, Zucchini S, Ciccocioppo R, Trapella C, Regoli D, Calo G. Pharmacological characterization of the nociceptin/orphanin FQ receptor antagonist SB- 612111 [(-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl] methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol]: in vivo studies. J Pharmacol Exp Ther. 2007;321:968-974. https://doi.org/10.1124/jpet.106.116780
  114. Holanda VA, Medeiros IU, Asth L, Guerrini R, Calo' G, Gavioli EC. Antidepressant activity of nociceptin/orphanin FQ receptor antagonists in the mouse learned helplessness. Psychopharmacology(Berl). 2016;233:2525-2532. https://doi.org/10.1007/s00213-016-4310-1
  115. Medeiros IU, Ruzza C, Asth L, Guerrini R, Romao PR, Gavioli EC, Calo G. Blockade of nociceptin/orphanin FQ receptor signaling reverses LPS-induced depressive-like behavior in mice. Peptides. 2015;72:95-103. https://doi.org/10.1016/j.peptides.2015.05.006
  116. Vitale G, Filaferro M, Micioni Di Bonaventura MV, Ruggieri V, Cifani C, Guerrini R, Simonato M, Zucchini S. Effects of $[Nphe^1, Arg^{14}, Lys^{15}]$ N/OFQ-$NH_2$ (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. J Psychopharmacol. 2017;31:691-703. https://doi.org/10.1177/0269881117691456
  117. Vitale G, Ruggieri V, Filaferro M, Frigeri C, Alboni S, Tascedda F, Brunello N, Guerrini R, Cifani C, Massi M. Chronic treatment with the selective NOP receptor antagonist $[Nphe^1,Arg^{14},Lys^{15}]N/OFQ-NH_2$ (UFP-101) reverses the behavioural and biochemical effects of unpredictable chronic mild stress in rats. Psychopharmacology (Berl). 2009;207:173-189. https://doi.org/10.1007/s00213-009-1646-9
  118. Gu H, Hu D, Hong XR, Mao J, Cui Y, Hui N, Sha JY. Changes and significance of orphanin and serotonin in patients with postpartum depression. Zhonghua Fu Chan Ke Za Zhi. 2003;38:727-728.
  119. Wang LN, Liu LF, Zhang JX, Zhao GF. Plasma levels of nociceptin/orphanin FQ in patients with bipolar disorders and health adults. Zhonghua Yi Xue Za Zhi. 2009;89:916-918.
  120. Aziz AM, Brothers S, Sartor G, Holm L, Heilig M, Wahlestedt C, Thorsell A. The nociceptin/orphanin FQ receptor agonist SR-8993 as a candidate therapeutic for alcohol use disorders: validation in rat models. Psychopharmacology (Berl). 2016;233:3553-3563. https://doi.org/10.1007/s00213-016-4385-8
  121. aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. CMAJ. 2009;180:305-313. https://doi.org/10.1503/cmaj.080697
  122. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13-25. https://doi.org/10.1016/S0896-6273(02)00653-0
  123. Detke MJ, Rickels M, Lucki I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl). 1995;121:66-72. https://doi.org/10.1007/BF02245592
  124. Hughes ZA, Stanford SC. A partial noradrenergic lesion induced by DSP-4 increases extracellular noradrenaline concentration in rat frontal cortex: a microdialysis study in vivo. Psychopharmacology (Berl). 1998;136:299-303. https://doi.org/10.1007/s002130050569
  125. Cryan JF, Page ME, Lucki I. Noradrenergic lesions differentially alter the antidepressant-like effects of reboxetine in a modified forced swim test. Eur J Pharmacol. 2002;436:197-205. https://doi.org/10.1016/S0014-2999(01)01628-4
  126. Kirby LG, Allen AR, Lucki I. Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res. 1995;682:189-196. https://doi.org/10.1016/0006-8993(95)00349-U
  127. Mangiavacchi S, Masi F, Scheggi S, Leggio B, De Montis MG, Gambarana C. Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J Neurochem. 2001;79:1113-1121. https://doi.org/10.1046/j.1471-4159.2001.00665.x
  128. Ressler KJ, Nemeroff CB. Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety. 2000;12 Suppl 1:2-19. https://doi.org/10.1002/1520-6394(2000)12:1+<2::AID-DA2>3.0.CO;2-4
  129. Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, Nakai A, Debonnel G, Blier P, Benkelfat C. Measurement of brain regional alpha-[11C]methyl-L-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry. 2004;61:556-563. https://doi.org/10.1001/archpsyc.61.6.556
  130. Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol. 2012;22:1-16. https://doi.org/10.1016/j.euroneuro.2011.05.003
  131. Cole J, Costafreda SG, McGuffin P, Fu CH. Hippocampal atrophy in first episode depression: a meta-analysis of magnetic resonance imaging studies. J Affect Disord. 2011;134:483-487. https://doi.org/10.1016/j.jad.2011.05.057
  132. Zhang FF, Peng W, Sweeney JA, Jia ZY, Gong QY. Brain structure alterations in depression: Psychoradiological evidence. CNS Neurosci Ther. 2018;24:994-1003. https://doi.org/10.1111/cns.12835
  133. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413-1417. https://doi.org/10.1038/nm.2886
  134. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45:1085-1098. https://doi.org/10.1016/S0006-3223(99)00041-4
  135. Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004;56:640-650. https://doi.org/10.1016/j.biopsych.2004.08.022
  136. Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry. 2003;160:1516-1518. https://doi.org/10.1176/appi.ajp.160.8.1516
  137. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68-72. https://doi.org/10.1126/science.1222939
  138. McEwen BS, Nasca C, Gray JD. Stress effects on neuronal structure: hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacol. 2016;41:3-23. https://doi.org/10.1038/npp.2015.171
  139. Castren E, Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol Dis. 2017;97(Pt B):119-126. https://doi.org/10.1016/j.nbd.2016.07.010
  140. Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacol (Berl). 2018;235:2195-2220. https://doi.org/10.1007/s00213-018-4950-4
  141. Dunham JS, Deakin JFW, Miyajima F, Payton A, Toro CT. Expression of hippocampal brain-derived neurotrophic factor and its receptors in Stanley consortium brains. J Psychiatr Res. 2009;43:1175-1184. https://doi.org/10.1016/j.jpsychires.2009.03.008
  142. Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol. 2008;11:1047-1061. https://doi.org/10.1017/S1461145708009000
  143. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M. Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull. 2006;70:221-227. https://doi.org/10.1016/j.brainresbull.2006.04.008
  144. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50:260-265. https://doi.org/10.1016/S0006-3223(01)01083-6
  145. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD, Walsh DM, Myers RM, Bunney WE, Watson SJ, Jones EG, Akil H. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A. 2004;101:15506-15511. https://doi.org/10.1073/pnas.0406788101
  146. Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast growth factors in depression. Front Pharmacol. 2019;10:60. https://doi.org/10.3389/fphar.2019.00060
  147. Elsayed M, Banasr M, Duric V, Fournier NM, Licznerski P, Duman RS. Antidepressant effects of fibroblast growth factor-2 in behavioral and cellular models of depression. Biol Psychiatry. 2012;72:258-265. https://doi.org/10.1016/j.biopsych.2012.03.003
  148. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci. 2002;22:3251-3261. https://doi.org/10.1523/JNEUROSCI.22-08-03251.2002
  149. Turner CA, Gula EL, Taylor LP, Watson SJ, Akil H. Antidepressantlike effects of intracerebroventricular FGF2 in rats. Brain Res. 2008;1224:63-68. https://doi.org/10.1016/j.brainres.2008.05.088
  150. Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacol. 2008;55:1114-1120. https://doi.org/10.1016/j.neuropharm.2008.07.014
  151. Mallei A, Shi B, Mocchetti I. Antidepressant treatments induce the expression of basic fibroblast growth factor in cortical and hippocampal neurons. Mol Pharmacol. 2002;61:1017-1024. https://doi.org/10.1124/mol.61.5.1017
  152. Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci. 1995;15:7539-7547. https://doi.org/10.1523/JNEUROSCI.15-11-07539.1995
  153. Zhang Y, Gu F, Chen J, Dong W. Chronic antidepressant administration alleviates frontal and hippocampal BDNF deficits in CUMS rat. Brain Res. 2010;1366:141-148. https://doi.org/10.1016/j.brainres.2010.09.095
  154. Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T, Meuth S, Nagy A, Greene RW, Nestler EJ. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci U S A. 2004;101:10827-10832. https://doi.org/10.1073/pnas.0402141101
  155. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, Mac-Donald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P, Castren E. Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci. 2003;23:349-357. https://doi.org/10.1523/JNEUROSCI.23-01-00349.2003
  156. Simard S, Shail P, MacGregor J, El Sayed M, Duman RS, Vaccarino FM, Salmaso N. Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetine. PLoS One. 2018;13:e0204980. https://doi.org/10.1371/journal.pone.0204980
  157. Pariante CM. Risk factors for development of depression and psychosis. glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci. 2009;1179:144-152. https://doi.org/10.1111/j.1749-6632.2009.04978.x
  158. Kvarta MD, Bradbrook KE, Dantrassy HM, Bailey AM, Thompson SM. Corticosterone mediates the synaptic and behavioral effects of chronic stress at rat hippocampal temporoammonic synapses. J Neurophysiol. 2015;114:1713-1724. https://doi.org/10.1152/jn.00359.2015
  159. Gourley SL, Taylor JR. Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci. 2009; Chapter 9:Unit 9.32.
  160. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry. 2008;63:353-359. https://doi.org/10.1016/j.biopsych.2007.07.016
  161. Johnson SA, Fournier NM, Kalynchuk LE. Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res. 2006;168:280-288. https://doi.org/10.1016/j.bbr.2005.11.019
  162. Wulsin AC, Herman JP, Solomon MB. Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology. 2010;35:1100-1112. https://doi.org/10.1016/j.psyneuen.2010.01.011
  163. Solomon MB, Wulsin AC, Rice T, Wick D, Myers B, McKlveen J, Flak JN, Ulrich-Lai Y, Herman JP. The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Horm Behav. 2014;65:363-371. https://doi.org/10.1016/j.yhbeh.2014.02.002
  164. Wu LM, Han H, Wang QN, Hou HL, Tong H, Yan XB, Zhou JN. Mifepristone repairs region-dependent alteration of synapsin I in hippocampus in rat model of depression. Neuropsychopharmacol. 2007;32:2500-2510. https://doi.org/10.1038/sj.npp.1301386
  165. Block TS, Kushner H, Kalin N, Nelson C, Belanoff J, Schatzberg A. Combined analysis of mifepristone for psychotic depression: plasma levels associated with clinical response. Biol Psychiatry. 2018;84:46-54. https://doi.org/10.1016/j.biopsych.2018.01.008
  166. Lucassen PJ, Oomen CA, Naninck EF, Fitzsimons CP, van Dam AM, Czeh B, Korosi A. Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation. Cold Spring Harb Perspect Biol. 2015;7:a021303. https://doi.org/10.1101/cshperspect.a021303
  167. Oomen CA, Mayer JL, de Kloet ER, Joels M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci. 2007;26:3395-3401. https://doi.org/10.1111/j.1460-9568.2007.05972.x
  168. Mayer JL, Klumpers L, Maslam S, de Kloet ER, Joels M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J Neuroendocrinol. 2006;18:629-631. https://doi.org/10.1111/j.1365-2826.2006.01455.x

Cited by

  1. Endogenous opiates and behavior: 2019 vol.141, 2019, https://doi.org/10.1016/j.peptides.2021.170547
  2. The Role of Nociceptin in Opioid Regulation of Brain Functions vol.15, pp.3, 2021, https://doi.org/10.1134/s1990750821030094
  3. Role of Nociceptin/Orphanin FQ-NOP Receptor System in the Regulation of Stress-Related Disorders vol.22, pp.23, 2021, https://doi.org/10.3390/ijms222312956
  4. Neuropeptides: Potential neuroprotective agents in ischemic injury vol.288, 2019, https://doi.org/10.1016/j.lfs.2021.120186