DOI QR코드

DOI QR Code

Selective serotonin reuptake inhibitor escitalopram inhibits 5-HT3 receptor currents in NCB-20 cells

  • Park, Yong Soo (Department of Anatomy, College of Medicine, The Catholic University of Korea) ;
  • Sung, Ki-Wug (Department of Pharmacology, College of Medicine, The Catholic University of Korea)
  • 투고 : 2019.08.06
  • 심사 : 2019.10.10
  • 발행 : 2019.11.01

초록

Escitalopram is one of selective serotonin reuptake inhibitor antidepressants. As an S-enantiomer of citalopram, it shows better therapeutic outcome in depression and anxiety disorder treatment because it has higher selectivity for serotonin reuptake transporter than citalopram. The objective of this study was to determine the direct inhibitory effect of escitalopram on 5-hydroxytryptamine type 3 ($5-HT_3$) receptor currents and study its blocking mechanism to explore additional pharmacological effects of escitalopram through $5-HT_3$ receptors. Using a wholecell voltage clamp method, we recorded currents of $5-HT_3$ receptors when 5-HT was applied alone or co-applied with escitalopram in cultured NCB-20 neuroblastoma cells known to express $5-HT_3$ receptors. 5-HT induced currents were inhibited by escitalopram in a concentration-dependent manner. $EC_{50}$ of 5-HT on $5-HT_3$ receptor currents was increased by escitalopram while the maximal peak amplitude was reduced by escitalopram. The inhibitory effect of escitalopram was voltage independent. Escitalopram worked more effectively when it was co-applied with 5-HT than pre-application of escitalopram. Moreover, escitalopram showed fast association and dissociation to the open state of $5-HT_3$ receptor channel with accelerating receptor desensitization. Although escitalopram accelerated $5-HT_3$ receptor desensitization, it did not change the time course of desensitization recovery. These results suggest that escitalopram can inhibit $5-HT_3$ receptor currents in a non-competitive manner with the mechanism of open channel blocking.

키워드

참고문헌

  1. Hyttel J. Citalopram--pharmacological profile of a specific serotonin uptake inhibitor with antidepressant activity. Prog Neuropsychopharmacol Biol Psychiatry. 1982;6:277-295. https://doi.org/10.1016/S0278-5846(82)80179-6
  2. Waugh J, Goa KL. Escitalopram : a review of its use in the management of major depressive and anxiety disorders. CNS Drugs. 2003;17:343-362. https://doi.org/10.2165/00023210-200317050-00004
  3. Braestrup C, Sanchez C. Escitalopram: a unique mechanism of action. Int J Psychiatry Clin Pract. 2004;8 Suppl 1:11-13. https://doi.org/10.1080/13651500410005496
  4. Thaler K, Delivuk M, Chapman A, Gaynes BN, Kaminski A, Gartlehner G. Second-generation antidepressants for seasonal affective disorder. Cochrane Database Syst Rev. 2011;(12):CD008591.
  5. Patetsos E, Horjales-Araujo E. Treating chronic pain with SSRIs: what do we know? Pain Res Manag. 2016;2016:2020915.
  6. Howland RH. A question about the potential cardiac toxicity of escitalopram. J Psychosoc Nurs Ment Health Serv. 2012;50:17-20.
  7. Garfield LD, Dixon D, Nowotny P, Lotrich FE, Pollock BG, Kristjansson SD, Dore PM, Lenze EJ. Common selective serotonin reuptake inhibitor side effects in older adults associated with genetic polymorphisms in the serotonin transporter and receptors: data from a randomized controlled trial. Am J Geriatr Psychiatry. 2014;22:971-979. https://doi.org/10.1016/j.jagp.2013.07.003
  8. Bjorkholm C, Marcus MM, Konradsson-Geuken A, Jardemark K, Svensson TH. The novel antipsychotic drug brexpiprazole, alone and in combination with escitalopram, facilitates prefrontal glutamatergic transmission via a dopamine D1 receptor-dependent mechanism. Eur Neuropsychopharmacol. 2017;27:411-417. https://doi.org/10.1016/j.euroneuro.2017.01.014
  9. Theriault O, Poulin H, Beaulieu JM, Chahine M. Differential modulation of Nav1.7 and Nav1.8 channels by antidepressant drugs. Eur J Pharmacol. 2015;764:395-403. https://doi.org/10.1016/j.ejphar.2015.06.053
  10. Chae YJ, Jeon JH, Lee HJ, Kim IB, Choi JS, Sung KW, Hahn SJ. Escitalopram block of hERG potassium channels. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:23-32. https://doi.org/10.1007/s00210-013-0911-y
  11. Sugita S, Shen KZ, North RA. 5-hydroxytryptamine is a fast excitatory transmitter at 5-$HT_3$ receptors in rat amygdala. Neuron. 1992;8:199-203. https://doi.org/10.1016/0896-6273(92)90121-S
  12. Katsurabayashi S, Kubota H, Tokutomi N, Akaike N. A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology. 2003;44:1022-1030. https://doi.org/10.1016/S0028-3908(03)00103-5
  13. Thompson AJ, Lummis SC. 5-$HT_3$ receptors. Curr Pharm Des. 2006;12:3615-3630. https://doi.org/10.2174/138161206778522029
  14. Barnes NM, Hales TG, Lummis SC, Peters JA. The 5-$HT_3$ receptor--the relationship between structure and function. Neuropharmacology. 2009;56:273-284. https://doi.org/10.1016/j.neuropharm.2008.08.003
  15. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D. Primary structure and functional expression of the 5$HT_3$ receptor, a serotonin-gated ion channel. Science. 1991;254:432-437. https://doi.org/10.1126/science.1718042
  16. Thompson AJ, Lummis SC. The 5-$HT_3$ receptor as a therapeutic target. Expert Opin Ther Targets. 2007;11:527-540. https://doi.org/10.1517/14728222.11.4.527
  17. Walstab J, Rappold G, Niesler B. 5-$HT_3$ receptors: role in disease and target of drugs. Pharmacol Ther. 2010;128:146-169. https://doi.org/10.1016/j.pharmthera.2010.07.001
  18. Navari RM. 5-$HT_3$ receptors as important mediators of nausea and vomiting due to chemotherapy. Biochim Biophys Acta. 2015;1848(10 Pt B):2738-2746. https://doi.org/10.1016/j.bbamem.2015.03.020
  19. Smith HS, Cox LR, Smith EJ. 5-$HT_3$ receptor antagonists for the treatment of nausea/vomiting. Ann Palliat Med. 2012;1:115-120.
  20. Gupta D, Radhakrishnan M, Kurhe Y. Ondansetron, a $5HT_3$ receptor antagonist reverses depression and anxiety-like behavior in streptozotocin-induced diabetic mice: possible implication of serotonergic system. Eur J Pharmacol. 2014;744:59-66. https://doi.org/10.1016/j.ejphar.2014.09.041
  21. Nasirinezhad F, Hosseini M, Karami Z, Yousefifard M, Janzadeh A. Spinal 5-$HT_3$ receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron. J Spinal Cord Med. 2016;39:212-219. https://doi.org/10.1179/2045772315Y.0000000047
  22. Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-$HT_3$ receptors in drug abuse and as a target for pharmacotherapy. CNS Neurol Disord Drug Targets. 2008;7:454-467. https://doi.org/10.2174/187152708786927886
  23. Lovinger DM, White G. Ethanol potentiation of 5-hydroxytryptamine3 receptor-mediated ion current in neuroblastoma cells and isolated adult mammalian neurons. Mol Pharmacol. 1991;40:263-270.
  24. Rajkumar R, Mahesh R. The auspicious role of the 5-$HT_3$ receptor in depression: a probable neuronal target? J Psychopharmacol. 2010;24:455-469. https://doi.org/10.1177/0269881109348161
  25. Fan P. Inhibition of a 5-$HT_3$ receptor-mediated current by the selective serotonin uptake inhibitor, fluoxetine. Neurosci Lett. 1994;173:210-212. https://doi.org/10.1016/0304-3940(94)90185-6
  26. Eisensamer B, Rammes G, Gimpl G, Shapa M, Ferrari U, Hapfelmeier G, Bondy B, Parsons C, Gilling K, Zieglgansberger W, Holsboer F, Rupprecht R. Antidepressants are functional antagonists at the serotonin type 3 (5-$HT_3$) receptor. Mol Psychiatry. 2003;8:994-1007. https://doi.org/10.1038/sj.mp.4001314
  27. Choi JS, Choi BH, Ahn HS, Kim MJ, Rhie DJ, Yoon SH, Min DS, Jo YH, Kim MS, Sung KW, Hahn SJ. Mechanism of block by fluoxetine of 5-hydroxytryptamine3 (5-$HT_3$)-mediated currents in NCB-20 neuroblastoma cells. Biochem Pharmacol. 2003;66:2125-2132. https://doi.org/10.1016/j.bcp.2003.08.012
  28. Lambert JJ, Peters JA, Hales TG, Dempster J. The properties of 5-$HT_3$ receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol. 1989;97:27-40. https://doi.org/10.1111/j.1476-5381.1989.tb11920.x
  29. Lovinger DM, Sung KW, Zhou Q. Ethanol and trichloroethanol alter gating of 5-$HT_3$ receptor-channels in NCB-20 neuroblastoma cells. Neuropharmacology. 2000;39:561-570. https://doi.org/10.1016/S0028-3908(99)00164-1
  30. Kim KJ, Jeun SH, Sung KW. Lamotrigine, an antiepileptic drug, inhibits 5-$HT_3$ receptor currents in NCB-20 neuroblastoma cells. Korean J Physiol Pharmacol. 2017;21:169-177. https://doi.org/10.4196/kjpp.2017.21.2.169
  31. Park YS, Sung KW. Gastrokinetic agent, mosapride inhibits 5-$HT_3$ receptor currents in NCB-20 cells. Korean J Physiol Pharmacol. 2019;23:419-426. https://doi.org/10.4196/kjpp.2019.23.5.419
  32. Snyders DJ, Hondeghem LM, Bennett PB. Mechanisms of drugchannel interaction. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, editors. The heart and cardiovascular system: scientific foundations. New York: Raven Press; 1991. p.2165-2193.
  33. Park YS, Myeong SH, Kim IB, Sung KW. Tricyclic antidepressant amitriptyline inhibits 5-hydroxytryptamine 3 receptor currents in NCB-20 cells. Korean J Physiol Pharmacol. 2018;22:585-595. https://doi.org/10.4196/kjpp.2018.22.5.585
  34. Fohr KJ, Zeller K, Georgieff M, Koster S, Adolph O. Open channel block of NMDA receptors by diphenhydramine. Neuropharmacology. 2015;99:459-470. https://doi.org/10.1016/j.neuropharm.2015.08.021
  35. Johnson JW, Kotermanski SE. Mechanism of action of memantine. Curr Opin Pharmacol. 2006;6:61-67. https://doi.org/10.1016/j.coph.2005.09.007
  36. Wang DS, Mangin JM, Moonen G, Rigo JM, Legendre P. Mechanisms for picrotoxin block of alpha2 homomeric glycine receptors. J Biol Chem. 2006;281:3841-3855. https://doi.org/10.1074/jbc.M511022200
  37. Gunthorpe MJ, Lummis SC. Diltiazem causes open channel block of recombinant 5-$HT_3$ receptors. J Physiol. 1999;519 Pt 3:713-722. https://doi.org/10.1111/j.1469-7793.1999.0713n.x
  38. Kasper S, Spadone C, Verpillat P, Angst J. Onset of action of escitalopram compared with other antidepressants: results of a pooled analysis. Int Clin Psychopharmacol. 2006;21:105-110. https://doi.org/10.1097/01.yic.0000194375.42589.c3
  39. Thompson AJ, Sullivan NL, Lummis SC. Characterization of 5-$HT_3$ receptor mutations identified in schizophrenic patients. J Mol Neurosci. 2006;30:273-281. https://doi.org/10.1385/JMN:30:3:273
  40. Nayak SV, Ronde P, Spier AD, Lummis SC, Nichols RA. Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience. 1999;91:107-117. https://doi.org/10.1016/S0306-4522(98)00520-X
  41. Haggarty SJ, Perlis RH. Pharmacology of serotonergic and central adrenergic neurotransmission. In: Golan DE editor. Principles of pharmacology: the pathophysiologic basis of drug therapy, 4th ed. Philadelphia: Wolters Kluwer; 2017. p.227-248.