DOI QR코드

DOI QR Code

RIGIDITY CHARACTERIZATION OF COMPACT RICCI SOLITONS

  • Li, Fengjiang (Department of Mathematics East China Normal University) ;
  • Zhou, Jian (Department of Mathematics Yunnan Normal University)
  • Received : 2018.11.02
  • Accepted : 2018.11.29
  • Published : 2019.11.01

Abstract

In this paper, we firstly define the Ricci mean value along the gradient vector field of the Ricci potential function and show that it is non-negative on a compact Ricci soliton. Furthermore a Ricci soliton is Einstein if and only if its Ricci mean value is vanishing. Finally, we obtain a compact Ricci soliton $(M^n,g)(n{\geq}3)$ is Einstein if its Weyl curvature tensor and the Kulkarni-Nomizu product of Ricci curvature are orthogonal.

Keywords

References

  1. C. Bohm and B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2) 167 (2008), no. 3, 1079-1097. https://doi.org/10.4007/annals. 2008.167.1079
  2. H.-D. Cao, Existence of gradient Kahler-Ricci solitons, in Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994), 1-16, A K Peters, Wellesley, MA, 1996.
  3. H.-D. Cao and Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2377-2391. https://doi.org/10.1090/S0002-9947-2011-05446-2
  4. X. Cao, Compact gradient shrinking Ricci solitons with positive curvature operator, J. Geom. Anal. 17 (2007), no. 3, 425-433. https://doi.org/10.1007/BF02922090
  5. X. Cao, B. Wang, and Z. Zhang, On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math. 13 (2011), no. 2, 269-282. https://doi.org/10.1142/S0219199711004191
  6. X. Chen, P. Lu, and G. Tian, A note on uniformization of Riemann surfaces by Ricci flow, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3391-3393. https://doi.org/10.1090/S0002-9939-06-08360-2
  7. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195-204. https://doi.org/10.1007/BF01425237
  8. B. Chow, S.-C. Chu, C. Guenther, J. Isenber, T. Ivey, D. Knopf, P. Lu, F. Luo, and L. Ni, The Ricci Flow: Techniques and Applications. Part I, Mathematical Surveys and Monographs, 135, American Mathematical Society, Providence, RI, 2007.
  9. B. Chow and D. Knopf, The Ricci Flow: An Introduction, Mathematical Surveys and Monographs, 110, American Mathematical Society, Providence, RI, 2004. https://doi.org/10.1090/surv/110
  10. A. Derdzinski, Compact Ricci solitons, Work in progress. Last updated on December 4 2009, 1-57, inprint.
  11. M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345-367. https://doi.org/10.1007/s00229-008-0210-y
  12. Z. Guo, Scalar curvature of self-shrinker, J. Math. Soc. Japan 70 (2018), no. 3, 1103-1110. https://doi.org/10.2969/jmsj/73427342
  13. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977.
  14. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. http://projecteuclid.org/euclid.jdg/1214436922 https://doi.org/10.4310/jdg/1214436922
  15. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/071/954419
  16. R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993), no. 1, 225-243. http://projecteuclid.org/euclid.jdg/1214453430 https://doi.org/10.4310/jdg/1214453430
  17. E. Hopf, Elementare Bemerkungen uber die Losungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsberichte Akad. Berlin, (1927), 147-152.
  18. T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301-307. https://doi.org/10.1016/0926-2245(93)90008-O
  19. N. Koiso, On rotationally symmetric Hamilton's equation for Kahler-Einstein metrics, in Recent topics in differential and analytic geometry, 327-337, Adv. Stud. Pure Math., 18-I, Academic Press, Boston, MA, 1990. https://doi.org/10.2969/aspm/01810327
  20. A. Naber, Noncompact shrinking four solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010), 125-153. https://doi.org/10.1515/CRELLE.2010.062
  21. L. Ni and N. Wallach, On a classification of gradient shrinking solitons, Math. Res. Lett. 15 (2008), no. 5, 941-955. https://doi.org/10.4310/MRL.2008.v15.n5.a9
  22. M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207-213. https://doi.org/10.2307/2373587
  23. G. Perelman, The entropy formula for the Ricci ow and its geometric applications, Mathematics 95 (2002), 1-39.
  24. Z.-H. Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009), no. 1, 189-200. https://doi.org/10.2140/pjm.2009.242.189