DOI QR코드

DOI QR Code

COUNTING SUBRINGS OF THE RING ℤm × ℤn

  • Toth, Laszlo (Department of Mathematics University of Pecs)
  • Received : 2018.12.05
  • Accepted : 2019.01.24
  • Published : 2019.11.01

Abstract

Let $m,n{\in}{\mathbb{N}}$. We represent the additive subgroups of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$, which are also (unital) subrings, and deduce explicit formulas for $N^{(s)}(m,n)$ and $N^{(us)}(m,n)$, denoting the number of subrings of the ring ${\mathbb{Z}}_m{\times}{\mathbb{Z}}_n$ and its unital subrings, respectively. We show that the functions $(m,n){\mapsto}N^{u,s}(m,n)$ and $(m,n){\mapsto}N^{(us)}(m,n)$ are multiplicative, viewed as functions of two variables, and their Dirichlet series can be expressed in terms of the Riemann zeta function. We also establish an asymptotic formula for the sum $\sum_{m,n{\leq}x}N^{(s)}(m,n)$, the error term of which is closely related to the Dirichlet divisor problem.

Keywords

References

  1. D. D. Anderson and V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma, in Rings, modules and representations, 1-12, Contemp. Math., 480, Amer. Math. Soc., Providence, RI, 2009. https://doi.org/10.1090/conm/480/09364
  2. D. D. Anderson and J. Kintzinger, Ideals in direct products of commutative rings, Bull. Aust. Math. Soc. 77 (2008), no. 3, 477-483. https://doi.org/10.1017/S0004972708000415
  3. S. Atanasov, N. Kaplan, B. Krakoff, and J. Menzel, Counting finite index subrings of ${\mathbb{Z}^n$ and ${\mathbb{Z}[x]}/(x^n)$, Preprint 2018, 18 pp.; https://arxiv.org/abs/1609.06433v3.
  4. K. Bibak, B. M. Kapron, V. Srinivasan, R. Tauraso, and L. Toth, Restricted linear congruences, J. Number Theory 171 (2017), 128-144. https://doi.org/10.1016/j.jnt.2016.07.018
  5. J. Bourgain and N. Watt, Mean square of zeta function, circle problem and divisor problem revisited, Preprint 2017, 23 pp.; https://arxiv.org/abs/1709.04340.
  6. I. Chajda, G. Eigenthaler, and H. Langer, Ideals of direct products of rings, Asian-Eur. J. Math. 11 (2018), no. 4, 1850094, 6 pp. https://doi.org/10.1142/S1793557118500948
  7. S. K. Chebolu and C. L. Henry, When is a subgroup of a ring an ideal?, Involve 9 (2016), no. 3, 503-516. https://doi.org/10.2140/involve.2016.9.503
  8. S. Chimni and R. Takloo-Bighash, Counting subrings of ${\mathbb{Z}^n}$ of non-zero co-rank, Preprint 2018, 12 pp.; https://arxiv.org/abs/1812.09564.
  9. O. Grosek and Porubsky, Coprime solutions to $ax{\equiv}b$ (mod n), J. Math. Cryptol. 7 (2013), no. 3, 217-224. https://doi.org/10.1515/jmc-2013-5003
  10. M. Hampejs, N. Holighaus, L. Toth, and C. Wiesmeyr, Representing and counting the subgroups of the group ${\mathbb{Z}_m}{\times}{\mathbb{Z}_n}$, J. Numbers 2014 (2014), Article ID 491428, 6 pp.
  11. R. I. Liu, Counting subrings of $\mathbb{Z}^n$ of index k, J. Combin. Theory Ser. A 114 (2007), no. 2, 278-299. https://doi.org/10.1016/j.jcta.2006.05.002
  12. W. G. Nowak and L. Toth, On the average number of subgroups of the group ${\mathbb{Z}_m}{\times}{\mathbb{Z}_n}$, Int. J. Number Theory 10 (2014), no. 2, 363-374. https://doi.org/10.1142/S179304211350098X
  13. M. Tarnauceanu, An arithmetic method of counting the subgroups of a finite abelian group, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53 (101) (2010), 373-386.
  14. L. Toth, Subgroups of finite abelian groups having rank two via Goursat's lemma, Tatra Mt. Math. Publ. 59 (2014), 93-103. https://doi.org/10.2478/tmmp-2014-0021
  15. L. Toth, Multiplicative arithmetic functions of several variables: a survey, in Mathematics without boundaries, 483-514, Springer, New York, 2014.
  16. L. Toth and W. Zhai, On the error term concerning the number of subgroups of the groups ${\mathbb{Z}_m}{\times}{\mathbb{Z}_n}$ with m, $n{\leq}x$, Acta Arith. 183 (2018), no. 3, 285-299. https://doi.org/10.4064/aa171111-7-2