DOI QR코드

DOI QR Code

Si-core/SiGe-shell channel nanowire FET for sub-10-nm logic technology in the THz regime

  • Yu, Eunseon (Department of Electrical and Computer Engineering, Purdue University) ;
  • Son, Baegmo (Wonik IPS) ;
  • Kam, Byungmin (Wonik IPS) ;
  • Joh, Yong Sang (Wonik IPS) ;
  • Park, Sangjoon (Wonik IPS) ;
  • Lee, Won-Jun (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Jung, Jongwan (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Cho, Seongjae (Department of Electronics Engineering and the Graduate School of IT Convergence Engineering, Gachon University)
  • 투고 : 2018.05.24
  • 심사 : 2019.05.29
  • 발행 : 2019.12.06

초록

The p-type nanowire field-effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in-depth technology computer-aided design (TCAD) with quantum models for sub-10-nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence-band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe-shell channel p-type nanowire FET has demonstrated a strong potential for low-power and high-speed applications in 10-nm-and-beyond complementary metal-oxide-semiconductor (CMOS) technology.

키워드

참고문헌

  1. Y. Taur, CMOS design near the limit of scaling, IBM J. Res. Dev. 46 (2002), no. 2/3, 213-223. https://doi.org/10.1147/rd.462.0213
  2. International Technology Roadmap for Semiconductors (ITRS), 2013, [online] Available: http://www.itrs2.net.
  3. K. Gopalakrishnan, P. B. Griffin, and J. D. Plummer, I-MOS: A novel semiconductor device with a subthreshold slope lower than kT/q, in IEEE Int. Electron Dev. Meeting (IEDM), San Francisco, CA, USA, Dec. 2002, pp. 289-292.
  4. J. Ha et al., Investigation and optimization of double-gate MPI 1T DRAM with gate-induced drain leakage operation, J. Semicond. Technol. Sci. 19 (2019), no. 2, 165-171. https://doi.org/10.5573/JSTS.2019.19.2.165
  5. J. Lee, Y. Kim, and S. Cho, Design of poly-si junctionless finchannel FET with quantum-mechanical drift-diffusion models for sub-10-nm technology nodes, IEEE Trans. Electron Devices. 12 (2016), no. 6, 847-853.
  6. T. Krishnamohan et al., Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and << 60mV/dec subthreshold slope, in IEEE Int. Electron Dev. Meeting (IEDM), San Francisco, CA, USA, Dec. 2008, pp. 1-3.
  7. M. Shi et al., Investigation on phase-change synapse devices for more gradual switching, J. Semicond. Technol. Sci. 19 (2019), no. 1, 8-17. https://doi.org/10.5573/JSTS.2019.19.1.008
  8. J. Lee et al., Fabrication methods for nanowire tunnel fet with locally concentrated silicon-germanium channel, J. Semicond. Technol. Sci. 1 (2019), no. 1, 18-23.
  9. D.-I. Bae et al., A novel tensile Si (n) and compressive SiGe (p) dual-channel CMOS FinFET co-integration scheme for 5nm logic applications beyond, in IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2016, pp. 28.1:1-4.
  10. C. Clays and E. Simoen, Germanium-based technologies, Elsevier, Amsterdam, Netherlands, 2007.
  11. D. V. Lang et al., Measurement of the band gap of $Ge_xSi_{1-x}/Si$ strained-layer heterostructures, Appl. Phys. Lett. 47 (1985), no. 12, 1333-1335. https://doi.org/10.1063/1.96271
  12. R. Braunstein, A. R. Moore, and F. Herman, Intrinsic optical absorption in germanium-silicon alloys, Phys. Rev. 109 (1985), no. 3, 695-710. https://doi.org/10.1103/PhysRev.109.695
  13. W. Lu et al., One-dimensional hole gas in germanium/silicon nanowire heterostructures, Proc. Nat. Acad. Sci. USA 102 (2005), no. 29, 10046-10051. https://doi.org/10.1073/pnas.0504581102
  14. J. Xiang et al., Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature 441 (2006), no. 7092, 489-493. https://doi.org/10.1038/nature04796
  15. H. M. Fahad and M. M. Hussain, Are nanotube architectures more advantageous than nanowire architectures for field effect transistors?, Sci. Rep. 2 (2012), no. 475, 1-7.
  16. S. Krishnan et al., A manufacturable dual channel (Si and SiGe) high-k metal gate CMOS technology with multiple oxides for high performance and low power applications, in IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, USA, Dec. 2011, pp. 28.1:1-4.
  17. B. Ho et al., Segmented-channel Si1-xGex/Si pMOSFET for improved Ion and reduced variability, in Symp. VLSI Technol., Honolulu, HI, USA, June 2012, pp. 167-168.
  18. E. Yu and S. Cho, Design and analysis of nanowire p-type MOSFET coaxially having silicon core and germanium peripheral channel, Jpn. J. Appl. Phys. 55 (2016), no. 11, 114001:1-8.
  19. E. Yu et al., Ultra-thin SiGe shell channel p-type FinFET on bulk Si for Sub-10-nm technology nodes, IEEE Trans. Electron Devices 65 (2018), no. 4, 1290-1297. https://doi.org/10.1109/TED.2018.2808764
  20. G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron Devices 39 (1992), no. 2, 331-338. https://doi.org/10.1109/16.121690
  21. Silvaco, ATLAS User's Manual, Santa Clara, CA, USA, 2016.
  22. T. Tezuka, N. Sugiyama, and S. Takagi, Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction, Appl. Phys. Lett. 79 (2001), no. 12, 1795-1800. https://doi.org/10.1063/1.1405002
  23. S. Nakaharai et al., Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge condensation technique, Appl. Phys. Lett. 83 (2003), no. 17, 3516-3518. https://doi.org/10.1063/1.1622442
  24. T. Irisawa et al., Ge wire MOSFETs fabricated by three-dimensional Ge condensation technique, Thin Solid Films 517 (2008), no. 1, 167-169. https://doi.org/10.1016/j.tsf.2008.08.054
  25. A. Asenov, Random dopant induced threshold voltage lowering and fluctuations in Sub-0.1 m MOSFET's: A 3-D "atomistic" simulation study, IEEE Trans. Electron Devices 45 (1998), no. 12, 2505-2513. https://doi.org/10.1109/16.735728
  26. F. A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Tech. J. 39 (1960), 205-233. https://doi.org/10.1002/j.1538-7305.1960.tb03928.x
  27. S. M. Sze and K. K. Ng, Physics of semiconductor devices, New York, USA, Wiley, 2006, pp. 68.
  28. B.-G. Park, S. W. Hwang, and Y. J. Park, Nanoelectronic devices, Singapore, Pan Stanford, 2012.
  29. S. Takagi, M. Takayanagi, and A. Toriumi, Characterization of Inversion-Layer Capacitance of Holes in Si MOSFET's, IEEE Trans. Electron Devices 46 (1999), no. 7, 1446-1450. https://doi.org/10.1109/16.772489
  30. C.-J. Tang, T. Wang, and C.-S. Chang, Study of quantum confinement effects on hole mobility in silicon and germanium double gate metal-oxide-semiconductor field-effect transistors, Appl. Phys. Lett. 95 (2009), no. 14, 142103:1-3.
  31. Y. Liang et al., Critical thickness enhancement of epitaxial SiGe films grown on small structures, J. Appl. Phys. 97 (2005), no. 4, 043519:1-7.
  32. J. M. Hartmann, A. Abbadie, and S. Favier, Critical thickness for plastic relaxation of SiGe on Si(001) revisited, J. Appl. Phys. 110, (2011), no. 8, 083529:1-8.
  33. G. Eneman et al., Layout scaling of $Si_{1-x}Ge_x$-channel pFETs, IEEE Trans. Electron Devices 58 (2011), no. 8, 2544-2550. https://doi.org/10.1109/TED.2011.2157507
  34. T. Krishnamohan et al., High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments, IEEE Trans. Electron Devices 53 (2006), no. 5, 990-999. https://doi.org/10.1109/TED.2006.872362
  35. D. Kim, T. Krishnamohan, and K. C. Saraswat, Performance Evaluation of III-V Double-Gate n-MOSFETs, in IEEE Device Research Conf. (DRC), Santa Barbara, CA, USA, June 2008, pp. 67-68.
  36. Y. H. Wu et al., The effect of native oxide on epitaxial SiGe from deposited amorphous Ge on Si, Appl. Phys. Lett. 74 (1999), no. 528, 528-530. https://doi.org/10.1063/1.123176
  37. S. A. Dayeh et al., Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires, Nano Lett. 13 (2013), no. 5, 1869-1876. https://doi.org/10.1021/nl3022434
  38. L. J. Lauhon et al., Epitaxial core-shell and core-multishell nanowire heterostructures, Nature 420 (2002), no. 6911, 57-61. https://doi.org/10.1038/nature01141
  39. T. K. Kempa et al., Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices, J. Am. Chem. Soc. 135 (2013), no. 49, 18354-18357. https://doi.org/10.1021/ja411050r
  40. B.-I. Moshit and P. Fernando, A Route to High-Quality Crystalline Coaxial Core/Multishell Ge@Si(GeSi)(n) and Si@(GeSi)(n) Nanowire Heterostructures, Adv. Mater. 22 (2010), no. 8, 902-906. https://doi.org/10.1002/adma.200902815
  41. B.-M. Nguyen et al., Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires, Nano Lett. 15 (2015), no. 11, 7258-7264. https://doi.org/10.1021/acs.nanolett.5b02313
  42. J. Franco et al., On the impact of the Si passivation layer thickness on the NBTI of nanoscaled $Si_{0.45}Ge_{0.55}$ pMOSFETs, Microelectron. Eng. 88 (2011), no. 7, 1388-1391. https://doi.org/10.1016/j.mee.2011.03.065
  43. T. C. Chen et al., The characteristic of $HfO_2$ on strained SiGe, Mater. Sci. Semicond. Process. 8 (2005), no. 1-3, 209-213. https://doi.org/10.1016/j.mssp.2004.09.041
  44. K. Mistry et al., A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging, in IEEE Int. Electron Devices Meeting (IEDM), Washington, DC, USA, Dec. 2007, pp. 247-250.
  45. S. Cho et al., Analyses on small-signal parameters and radio-frequency modeling of gate-all-around tunneling field-effect transistors, IEEE Trans. Electron Devices 58 (2011), no. 12, 4164-4171. https://doi.org/10.1109/TED.2011.2167335